GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

Abstract

Context and purpose of the study – The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties. The aim of the present study was to evaluate the quality and the ripening process of Pinot blanc grape by a non-destructive fluorescence-based sensor.

Material and methods – The study was performed on two vineyards of cv. Pinot blanc located in the Adige Valley (South Tyrol, Bolzano), in two consecutive vintages. The vineyard differed in the row orientation, east-west or north-south, and then on the sun light exposure of the grape-bunches. The grape phenolic maturity was assessed on intact berries by six measurements from bunch closure to harvest time. In each vineyard, 25 grape-bunches per row sides were flashed by Multiplex® 3.6 (Force-A, Orsay, France), for a total of 3 rows and 150 grape-bunches/measurement. The instrument indices of chlorophyll (SFR_R) and flavonols (FLAV_UV) were considered. Standard grape maturity tests were performed to assess total soluble solids (TSS) and total acidity content of the grape juice by spectroscopic method. At maturity the grapes were processed with a standard vinification protocol for white wines. Total polyphenolic content of wines was determined by a spectrophotometric analysis.

Results – A linear decrease of SFR_R index in the berry-skin during the grape ripening period was recorded. Interestingly, SFR_R values negative correlated with the TTS accumulation in Pinot blanc berries. On the other side, positive correlations between SFR_R and titratable acidity, malic acid and tartaric acid content, were observed. The FLAV_UV index showed an increasing linear trend during the grape ripening period. At harvest, significant difference in FLAV_UV index between the two vineyards was observed. Looking more deeply inside the data, the berry-skin FLAV_UV index significantly differed among the four sun-light expositions, with greater values recorded for the grape-bunches located in south and east sides of the vineyard rows. These results are in accordance with the available literature on the role flavonols as sun-burn protection compounds. Interestingly, the total polyphenolic content of the produced wines showed a positive correlation with the final FLAV_UV values measured in the berry-skin. In conclusion, the Multiplex® indices could improve precision viticulture strategies, such as the implementation of precision harvest practices. Indeed, SFR_R index could be used to indirectly evaluate the whole ripening process of white grapes in term of grape sugar content and acidity, while FLAV_UV could provide useful indications to winemakers about taste of final product. Future studies will be necessary to better correlate the berry-skin FLAV_UV values and the flavours of white wine.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Selena TOMADA1*, Florian PICHLER1, Julia MARTINELLI1, Giovanni AGATI2, Valentina LAZAZZARA3, Martin ZEJFART4, Fenja HINZ3, Ulrich PEDRI4, Peter ROBATSCHER3, Florian HAAS1

1 Department of Viticulture, Laimburg Research Centre, BZ, Italy
2 Istituto di Fisica Applicata ‘Nello Carrara’, CNR, FI, Italy
3 Laboratory for Flavours and Metabolites, Laimburg Research Centre, BZ, Italy
4 Department of Enology, Laimburg Research Centre, BZ, Italy

Contact the author

Keywords

chlorophyll, flavonols, grape, Multiplex®, quality, Pinot blanc.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Evolución de los compuestos fenólicos durante el envero y la maduración en la DO Tarragona

La evolución de los contenidos en las pieles de compuestos fenólicos (fenólicos totales, antocianos totales, antocianos individuales por HPLC, catequinas y proantocianidoles) a lo largo

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).