terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of loci associated with specialised metabolites in Vitis vinifera

Identification of loci associated with specialised metabolites in Vitis vinifera

Abstract

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised. This study therefore aimed to identify novel loci associated with grapevine volatile organic and phenolic compounds. Chemical analysis of these compound classes was performed via GC-MS and UPLC analysis in a grapevine mapping population, and the quantified metabolites used for quantitative trait loci (QTL) analysis.  Several significant QTLs associated with terpenes and phenolic compounds were identified, and the underlying genomic regions were investigated. For phenolic compounds, a novel locus associated with caftaric acid biosynthesis was identified, and a hydroxycinnamoyltransferase (VvHCT) was investigated as a candidate gene. Several terpene synthases (VvTPSs) co-localised with QTLs associated with monoterpenes and sesquiterpenes. Notably, loci on chromosomes 12 and 13 were shown to be associated with geraniol and cyclic monoterpene accumulation, respectively. The locus on chromosome 12 was shown to contain a geraniol synthase gene (VvGer), while the locus on chromosome 13 contained an a-terpineol synthase gene (VvTer). Further molecular and genomic investigation of VvGer and VvTer found that these genes appear in tandemly duplicated clusters, with high levels of hemizygosity which was further supported by genomic data from recently published diploid grapevine genomes. Interestingly, copy number analysis demonstrated that VvTer gene copy number correlated with both VvTerexpression and the accumulation of cyclic monoterpenes, highlighting the impact of VvTPS gene duplication and copy number variation on terpene accumulation in grapevine.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Robin Bosman*1 and Justin Graham Lashbrooke2

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
2 Department of Genetics, Stellenbosch University, South Africa.

Contact the author*

Keywords

terpenes, TPS, grapevine, gene copy number, genomics, QTL, phenolics

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.