OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Abstract

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine. 

It is widely known that fining can remove soluble substances, including polymerized tannins and coloring matter in red wines affecting the organoleptic properties of wine. The use of yeast protein extracts (YPE) as fining agents arises from the allergic properties observed in classic protein-based fining agents. From the oenological point of view, it was already verified that this new fining agents promote the clarity and stabilization of wine, however is still a gap in their influence in polyphenol composition and the related organoleptic properties. 

The aim of this work is to understand the molecular mechanisms as how YPE-wine polyphenols interactions could modulate the color as well as the taste sensations (astringency and bitterness) after wine fining with YPE (developed by Proenol, Biotechnology Industry). Briefly, polyphenols related with astringency and bitterness were analyzed by LC-MS. The influence of YPE on wine color was also assayed by CieLab system. Furthermore, the effect of YPE-wine on the interaction with salivary proteins was also analyzed by SDS-PAGE after wine ingestion during a sensory evaluation. Finally, the results from experimental data were compared with the results obtained by sensorial panel. 

Overall, it was concluded that wines clarified with YPE revealed a significant decrease in the majority of identified compounds related to bitterness and astringency. The study of wine color revealed that YPE had the ability to reduce yellow color of white wines and did not remove red color of red and rosé wines, which is an important aspect in consumption market. Besides the decreasing of several polyphenols related with taste perception, some relevant differences were observed in the salivary protein profile by SDS-PAGE. The results observed herein highlighted the relationship between (1) the taste perception, (2) the interaction between salivary proteins and wine polyphenols during the sensorial evaluation and (3) the effect of YPE fining in wine polyphenols. 

In summary, YPE reveals to be a good alternative to protein animal origin fining agents due to the ability to promote wine sensorial properties.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Telmo Francisco, Rosa Pérez, Susana Soares, Nuno Mateus, Victor Freitas, Adriana Xavier, Manuel Figueiredo, Filipe Centeno, Maria Teixeira

LAQV-REQUINTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto
PROENOL, Indústria Biotecnológica, Lda, Travessa das Lages nº267, Apto 547, Canelas, VNG 4405-194 Portugal

Contact the author

Keywords

fining, yeast protein extract, organoleptic properties, salivary proteins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.

The Douro region: wine and tourism

The Demarcated Douro Region (DDR) dates from 1756, when it was recognized as one of the first demarcated regions in the world. The DDR economic activities fit the terroir model and are based on wine and tourism.