terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Abstract

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

This study focused on the spectral behavior and physiological changes in leaves of two grapevine cultivars, Riesling and Pinot Noir, that were subjected to different dehydration conditions. Dehydration rates varied from quick to medium and slow, examining the effect of time on the spectral and physiological response. The goal was to determine the potential role of time influencing the consistency of responses across different water dehydration conditions, and if drought stress symptoms could be detected through Vis-NIR analysis. The experimental design included four dehydration treatments: leaf dehydration by (i) detaching the leaves, (ii) cutting the stem from the roots, (iii) removing the soil from the root zone, and (iv) natural dehydration by irrigation withholding. By monitoring the spectral and physiological changes, the study aimed to assess the impact of different dehydration timings and the detectability of associated symptoms. Our results suggest that the timing of dehydration strongly influences the spectral signature changes. In instances under comparable water potentials, plants subjected to fast dehydration (e.g., stem cutting or detached leaves) displayed spectral patterns not significantly different as compared to the ones from adequately hydrated control plants. In contrast, plants undergoing gradual dehydration over several days (e.g., via irrigation withholding) exhibited spectral modifications consistent with previously documented findings.

Acknowledgements: Supported by the Projects DigiPlant and ImStress funded by NÖ Forschungs- und Bildungsges.mbH (NFB), Neue Herrengasse 10, 3rd floor, 3100 St. Pölten, Austria. We sincerely thank Rudi Rizzoli and Soma Laszlo Tarnay for their valuable contributions to the plants management, which played a crucial role in the research project.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flagiello F.1*, Herrera J.C.2, Farolfi E.2, Innocenti J.2, Kulhánková A.3, Bodner G.1

1 Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
2 Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
3 Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Prague 165 21, Czech Republic.

Contact the author*

Keywords

climate change, hyperspectral analysis, viticulture, drought stress, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.