terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Abstract

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

This study focused on the spectral behavior and physiological changes in leaves of two grapevine cultivars, Riesling and Pinot Noir, that were subjected to different dehydration conditions. Dehydration rates varied from quick to medium and slow, examining the effect of time on the spectral and physiological response. The goal was to determine the potential role of time influencing the consistency of responses across different water dehydration conditions, and if drought stress symptoms could be detected through Vis-NIR analysis. The experimental design included four dehydration treatments: leaf dehydration by (i) detaching the leaves, (ii) cutting the stem from the roots, (iii) removing the soil from the root zone, and (iv) natural dehydration by irrigation withholding. By monitoring the spectral and physiological changes, the study aimed to assess the impact of different dehydration timings and the detectability of associated symptoms. Our results suggest that the timing of dehydration strongly influences the spectral signature changes. In instances under comparable water potentials, plants subjected to fast dehydration (e.g., stem cutting or detached leaves) displayed spectral patterns not significantly different as compared to the ones from adequately hydrated control plants. In contrast, plants undergoing gradual dehydration over several days (e.g., via irrigation withholding) exhibited spectral modifications consistent with previously documented findings.

Acknowledgements: Supported by the Projects DigiPlant and ImStress funded by NÖ Forschungs- und Bildungsges.mbH (NFB), Neue Herrengasse 10, 3rd floor, 3100 St. Pölten, Austria. We sincerely thank Rudi Rizzoli and Soma Laszlo Tarnay for their valuable contributions to the plants management, which played a crucial role in the research project.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flagiello F.1*, Herrera J.C.2, Farolfi E.2, Innocenti J.2, Kulhánková A.3, Bodner G.1

1 Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
2 Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
3 Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Prague 165 21, Czech Republic.

Contact the author*

Keywords

climate change, hyperspectral analysis, viticulture, drought stress, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.