OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Impact of glutathione-rich inactivated yeast on wine chemical diversity

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Abstract

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must. Glutathione is beneficial to the wine quality, but scientists also highlighted that GSH-IDYs have a greater effect than only increase the pool of this antioxidant in the wine. This work unveils the extent of diversity of compounds potentially released by three different IDYs with increasing GSH contents.

Unsupervised analysis of IDYs released compounds in model wine was performed with the ultra-high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). This powerful tool allows to have an instant picture of the released compounds chemical diversity. Bioinformatics strategy (chemometric analysis and network annotation) were then applied to visualize and refine the generated data.

Our results clearly show an impact of the GSH accumulation process not only visible on the glutathione itself, but also on the global diversity of compounds. The ratio of annotated CHONS/CHO ions increased from 0.2 to 2.1 respectively with the accumulation of GSH. The IDY with the highest concentration of GSH released 36 unique CHONS annotated ions compared to the two others IDYs. Since the bioprocess dedicated to accumulate the intracellular glutathione used cysteine rich medium, the possibility to attribute this diversity to notably a larger number of cysteinyl residues in peptides raised. Within the 1699 detected ions by (-)FT-ICR-MS, 193 were annotated as peptide sequences (from 2 to 5 residues). Within this pool of peptides, the IDY specific diversity increased with the level of glutathione from 5 to 45 unique m/z. Besides the global diversity, m/z attributed to cysteine containing peptides were much more abundant in the GSH-rich IDY. Within the 25 peptides containing cysteine, and common to the three IDYs, 64 % were more intense in GSH-rich IDY. Thus, the process leading to accumulate glutathione is also involved in other metabolic pathways which contribute to increase CHONS containing compounds and notably peptides.

This work gives new clues on the potential of biotechnology to improve the efficiency of natural yeast derivatives to produce potential active compounds such as cysteine containing peptides. This could lead to substitute partially the chemical additives and thus leading to a better control of wine quality and a better consumer acceptability.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Florian Bahut, Youzhong Liu, Rémy Romanet, Nathalie Sieczkowski, Hervé Alexandre, Christian Coelho, Philippe Schmitt-Kopplin, Maria Nikolantonaki, Régis D. Gougeon

Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
Technische Universität München, Analytical Food Chemistry, Akademie 10, 85354 Freising, Germany

Contact the author

Email address (with mailto: link)

Keywords

yeast derivative, glutathione enrichment, metabolomic, peptide diversity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

WAC 2022: Abstracts are available on IVES Conference Series

In order to disseminate the scientific results presented during the WAC 2022 , the organizers have decided to share the abstracts of the oral communications and posters with Open Access on IVES Conference Series. The fifth edition of the International Conference...

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.