terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Abstract

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes. This technology is extremely gentle with molecules with sensory impact remaining unaffected compounds as terpenes, thiols, and anthocyanins, and protected of ulterior oxidations by the inactivation of oxidative enzymes (PPOs). The use of UHPH in must before fermentation is a powerful technology to eliminate wild microorganism and to facilitate the implantation of non-Saccharomyces inoculated as starters. In this work we show the efficient implantation of several weak-fermenter non-Saccharomyces and the effect on the release of volatile thiols.

Acknowledgements: This research was funded by MICIN, project PID2021-124250OB-I00.

References: 

1)  Morata, A. et al. (2020) Front. Nutr.7, 598286. https://doi.org/10.3389/fnut.2020.598286  

2)  Vaquero, C. et al. (2022) Food Bioprocess Technol. 15, 620–634. https://doi.org/10.1007/s11947-022-02766-8  

3)  Loira, I. et al. (2018) Innov. Food. Sci. Emerg. Technol. 50, 50–56. https://doi.org/10.1016/j.ifset.2018.10.005   

4)  Bañuelos, M.A. et al. (2020) Food Chem. 332, 127417. https://doi.org/10.1016/j.foodchem.2020.127417

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio MORATA1*, Iris LOIRA1, Juan Manuel DEL FRESNO1, Carlos ESCOTT1, Felipe PALOMERO1, Carmen LÓPEZ1, Buenaventura GUAMIS2, Mª Antonia BAÑUELOS3, Cristian VAQUERO1, Carmen GONZÁLEZ1

1enotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain
2YPSICON ADVANCED TECHNOLOGIES S.L, Via Trajana 50-56 Nave 21, 08020, Barcelona, Spain
3enotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain

Contact the author*

Keywords

UHPH, Implantation, non-Saccharomyces, Lachancea thermotolerans, terpenes, thiols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).