terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wines and atypical aging: investigating the risk of refermentation

Abstract

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Atypical aging is a sensorial fault that can occur soon after bottling. Characterized by the appearance of unpleasant scents (mothballs, damp towel and furniture polish) and the loss of varietal aroma, its chemical and sensorial origin is attributed to the presence of 2-aminoacetophenone (AAP), a degradation compound of indole-3-lactic acid (IAA). While at biological level this plant auxin is carefully regulated via bonding with amino acids or sugars, during fermentation, yeast is capable of freeing up unbound IAA. In the presence of oxidizing agents, its conversion into AAP leads to the appearance of ATA in wine.[1] Since yeast-related biochemical mechanisms are involved in the development of this fault and SW production entails a double fermentation process, the final product deserves extra attention in terms of ATA development. Therefore, the aim of this study was to evaluate the likelihood of producing tainted SW. To do so, 55 grape musts of 12 different varieties harvested over three vintages were fermented twice, initially to make the BWs and then the SWs. Interestingly, it was found that not only refermentation and storage increased the AAP content but also that the danger of producing ATA-tainted wines does not end with the making of SW. Indeed, upon an accelerated aging test, it was observed that the concentration of AAP was even increased. By using the data obtained from the BW samples, an ANCOVA model of linearization able to predict the formation of AAP upon refermentation with a R2 of 0.7 was created.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References: 

1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2)  Christoph, N., et al. (1998) Bildung von 2-Aminoacetophenon und Formylaminoacetophenon im Wein durch Einwirkung von schwefliger Säure auf Indol-3-essigsäure. Vitic. Enol. Sci 53.2, 79-86.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Simone Delaiti1,2*, Tomas Roman2, Tiziana Nardin2, Stefano Pedo’2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, sparkling wine, refermentation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.