terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Abstract

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification. Several genes controlling stomatal development have been characterized in Arabidopsis. Using translational genomics, we identified in the grapevine reference genome single orthologues of the master stomatal development regulators SPCH, MUTEand FAMA. We complemented Arabidopsis loss-of-function mutants with the grapevine candidate proteins, whose conditional overexpression also produced the expected epidermal phenotypes. The corresponding grapevine gene promoters are also under study. Additionally, we scored SA in 13 grapevine varieties over four consecutive growing seasons, and disclosed substantial SA differences with a strong genetic basis. These varieties were also examined for water use efficiency and physiological performance under drought and irrigation, finding significant varietal differences. Correlating developmental and physiological traits will contribute useful tools for grapevine management and breeding.   

Acknowledgements: This work was supported by the PID2019-105362RB-100, SBPLY/21/180501/000144, UCLM intramural grants and EU FEDER funds. PhD grants from JCCM supported AO and JIM.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mena-Morales A.1*, Martín-Forero A.F.2, Ortega A.2, Saiz-Pérez J.2, Martínez-Gascueña J.1, Chacón-Vozmediano J.L.1, Illescas-Miranda J.2, Fenoll C.2, Mena M. 2

1Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain
2 Faculty of Environmental and Biochemistry Sciences, University of Castilla-La Mancha, Avda. Carlos III, s/n, Technological Campus of the Arms Factory, 45071 Toledo, Spain

Contact the author*

Keywords

stomatal abundance, stomatal genes, genotypic variation, water use efficiency

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.