terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

Abstract

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs). A phylogenetic network from shared SNVs grouped the samples according to their geographic origin. Combined with genome re-sequencing data from the two ‘Tempranillo Tinto’ parents, this network clearly points out the Ebro River Valley as the region of origin of this cultivar. It also indicates one major historical dissemination route that likely progressed westwards towards the main wine-making regions found across the Duero River Valley and to the South in Portugal. Collectively, the results obtained in this study shed light on the origin and historical dispersal of ‘Tempranillo Tinto’ in the Iberian Peninsula, and release informative SNVs for the differentiation of intra-cultivar lineages.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN/AEI/10.13039/501100011033

References:

1)  Ibáñez J. et al. (2012) Genetic origin of the grapevine cultivar Tempranillo. Am. J. Enol. Vitic. 63(4): 549-553, DOI 10.5344/ajev.2012.12012

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Tello1*, Pablo Carbonell-Bejerano1, Rafael Torres-Pérez2, Yolanda Ferradás1,3, Carolina Royo1, Juan Carlos Oliveros2, Javier Ibáñez1, José Miguel Martínez-Zapater1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño
2 Centro Nacional de Biotecnología, C/Darwin 3, 28049 Madrid
3 Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela

Contact the author*

Keywords

genomic diversification, grapevine clones, Single Nucleotide Variants (SNVs), Vitis vinifera, whole genome sequencing

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].