terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of Ca, Si and their combination on grape volatile composition

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Abstract

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition. The aim of this work was to evaluate the influence of Ca and Si foliar treatments, applied either as single elements or in combination, on volatile composition of Tempranillo grapes. All treatments were applied twice, at veraison and one week later. The foliar applications were performed in triplicate, in a randomized block design. The volatile composition was determined in the musts by headspace solid-phase microextraction (HS-SPME) and subsequent analysis by GC-MS. Tempranillo is a neutral aromatic variety, for this reason, on this work we have focused on terpenoids and C13 norisoprenoids, the two families most important regarding varietal aromas. Foliar application of Ca and Ca+Si enhanced p-cymene, geraniol, neral, and total terpenoids content in must with respect to control one. Ca+Si foliar treatment also improved limonene, α-terpineol, linalool, and nerol concentration in comparison with control must. Regarding C13 norisoprenoids, Ca+Si foliar application was the only treatment that increased (E)-β-damascenone, (Z)-β-damascenone, β-cyclocitral, TDN, methyl jasmonate, and total C13norisoprenoids with respect control must. Therefore, Ca+Si foliar application is a good tool to improve the varietal aromatic quality of Tempranillo grapes and it is economically feasible.

Acknowledgements: M. G.-L. thanks the UR for her Margarita Salas contract (European Union-Next GenerationEU). E.P. P.-Á. thanks the MICIU for her postdoctoral financial support (IJC2019-040502-I). Thanks to the company Tradecorp for supplying us with the silicon product.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. González-Lázaro1, I. Sáenz de Urturi1, S. Marín-San Román1, R. Murillo-Peña1, L.L. Torres-Díaz1, E.P. Pérez-Álvarez1, V. Fernández2, M. del Álamo-Sanza3T. Garde-Cerdán1

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos Km. 6. 26007 Logroño, Spain
2Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid. Ciudad Universitaria, s/n. 28040 Madrid, Spain
3
Grupo UVaMOX (Unidad Asociada del ICVV), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Avda. Madrid 50, 34001 Palencia

Contact the author*

Keywords

calcium, silicon, foliar application, terpenoids, norisoprenoids, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].