terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Abstract

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).

Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8). During a 60-day trial, from flowering to ripening, every 15 days’ physiological analyses (Multiplex, DUALEX) and leaf gas exchange analyses were performed to monitor plant status. Root, trunk, shoot, leaf, and berry samples were collected at the end of the trial for phenolic content analysis. T 1:4 and T 1:8 treatments enhanced the plant’s physiological capacity 30 days after the start of the treatments, obtaining higher NBI values and chlorophyll concentrations (p-value < 0.05). Intrinsic water use efficiency (EUAi, AN/gs) also increased in both cane treatments (T 1:4 and T 1:8) due to higher CO2 fixation. However, plants irrigated with water supplemented with cane extract decreased polyphenol levels amounts in cane and leaf tissues, whereas in roots and trunk organs no differences in phenolic profile were noted. Control plants had higher total concentrations of stilbenes and flavonoids (anthocyanins and flavanols) in canes and flavonoids (anthocyanins, flavonols and flavanones) in leaves. Irrigation with cane extract seems enhanced physiological capacities but decreased secondary metabolite synthesis in aerial tissues (canes and leaves).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andreu Mairata1*, Josep Valls2,3,4, David Labarga1, Miguel Puelles1, Alan Jamain2, Stéphanie Cluzet2,3, Javier Portu1, Alicia Pou1

1 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26006 Logroño, Spain
2 Univ. Buordeoseaux, INRAE, Bordeaux INP, INRAEBordeaux Sciences Agro, OENO, UMR 1366, ISVV, Equipe Molécules d’Intérêt Biologique (MIB), ISVV,F-33140, Villenave d’Ornon, France, 33140, Francia
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170, Gradignan, France
4 Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140, Villenave d’Ornon, France

Contact the author*

Keywords

flavonoid, circular economy, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.