terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Abstract

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs. General chemical parameters and aroma profile of wines were determined using official OIV methodology and GC analysis. The microbiological control of fermentations revealed the presence of 5 to 15 different strains of S. cerevisiae depending on the variety. The highest diversity of yeast strains was found in Loureira fermentation. Strains named as G3 and G4 were the dominant yeasts in all processes, except Godello (controlled by strain G11); therefore, they are the main responsible for the fermentative aromas of the wines. The total acidity of wines ranged between 4,2 g/L with Treixadura and 5.2 g/L with Loureira, while the alcohol content ranged between 13 % (v/v) with Loureira and 14,2 % (v/v) with Lado. Treixadura wines showed the highest concentration of fermentative volatile compounds and this variety and Loureira reached the highest content of terpenes and eugenol. A blend of these monovarietal wines will allow to obtain an exclusive wine, which expresses the biodiversity from Granxa D’Outeiro terroir.

Acknowledgements: Project FEADER 2022/009A financed with funds from FEADER (75%), Xunta de Galicia (22.5%) and Ministry of Agriculture, Fisheries and Food (MAPA) (2.5%)

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pilar Blanco1*, Gloria Reinoso2, Rebeca González2, José Manuel M. Juste2, Manolo Neira2

Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense
2 A Granxa D’Outeiro, Francelos, Ribadavia, Ourense, 32418-Coordenadas (42.2745221, -8.1626866)

Contact the author*

Keywords

Granxa D’Outeiro, traditional grapevine varieties, spontaneous fermentation, Saccharomyces cerevisiae, yeast strains, wine chemical composition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.