terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Abstract

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change. The prevalent iso- or aniso-hydric behavior of grapevine varieties can be mitigated by the soil draining capacity: in the anisohydric Syrah grown in pots and in controlled conditions, an ABA-related stomatal closure was induced in water-retaining soils, resulting in a superimposition of the soil-related hormonal root-to-shoot signal respect to the putative genotypic-induced anisohydric response to water stress. In two consecutive years (2012 and 2013) we analyzed Nebbiolo water relations in two rain-fed vineyards (distance as the crow flies between the two was about 250 m) located on the Cannubi hill (Barolo area, Langhe Wine District, Piedmont, Italy). Vines were grafted on Vitis berlandieri x V. riparia rootstocks and soil were classified (USDA) as silty-loam (with 18 % of clay) and as loam (13 % of clay). We measured stomatal conductance, stem water potential, ABA leaf content and the main berry quality parameters. In 2013, the vineyard management (winter and green pruning, and bunch balance according to ‘Yield to Pruning Weight’ and ‘Leaf Area to Crop Weight’ ratios) allowed to avoid any discrepancies in the two vineyards vegetative-productive balance. Data showed that when drought was prolonged, Nebbiolo reduced its anisohydricity acting drought-induced stomatal closures earlier and for a longer period in the silty-loam soil, (richer in clay and more compact), respect to the loamy soil. The silty-loam soil determined a higher leaf ABA content during the season. This fact could explain the improved qualitative traits of berries harvested in the vineyard in the 18% clayey soil such as a higher content of anthocyanins (mg/berry), with a higher level of acylation (increase of color stabilization) and a higher content of free terpenes, following ABA-triggered metabolite responses.

Acknowledgements: authors warmly acknowledge Damilano cellar for hosting the trial.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alessandra Ferrandino1*, Antonio Carlomagno2, Gianpiero Romana3, Claudio Lovisolo1

1 DISAFA – University of Turin, Largo Braccini 2, Grugliasco (TO)
2 DiCEM – University of Basilicata, Via Lanera 20, Matera (MT)
Agronomist, Consultant

Contact the author*

Keywords

soil texture, stomatal conductance, leaf water potential, anthocyanins, free terpenes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.