terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Abstract

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability. Sigmoid curves were employed to model the impact of water potential on stomatal conductance (gs) and embolism in shoots. These curves determined the water potential at which gs decreased by 50% () and the water potential at which air extraction from shoots increased by 50% (). Pressure-volume curves estimated the water potential at which leaf turgor loss occurred ().

Additionally, sigmoid curves described the effect of decreased water potential on yield per plant. Results showed that Chardonnay exhibited earlier reduction in gs under moderate water stress compared to Sauvignon blanc, with the latter demonstrating greater water stress tolerance (). S. Blanc maintained higher gs and gas exchange under limited water availability, enabling a 50% reduction in yield per plant () even under low water availability conditions. In contrast, Chardonnay experienced cellular turgor loss () and impaired water conduction in shoots () at lower water availability than S. Blanc, potentially due to a larger hydro-escape area. Overall, cultivars’ capacity to sustain yield per plant under moderate water deficit conditions () was identified as a differentiating metric for cultivars. However, considering the cultivar’s potential yield is crucial to determine the economic viability of partial yield maintenance under a water deficit.

Acknowledgements: Fruit tree physiology Laboratory, ANID Human Capital program.

References:

  1. Henry, C., John, G. P., Pan, R., Bartlett, M. K., Fletcher, L. R., Scoffoni, C., & Sack, L. (2019). A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11006-1
  2. Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658–4676. https://doi.org/10.1093/jxb/eraa245

Fig. 1 Hydroscape area                                                                                  

Fig. 2 Metrics representing response to drought

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Felipe Suárez-Vega1*, Bastián Silva-Gutiérrez¹, Benjamín Velásquez¹, Felipe Torres-Pérez¹, Jose Alcalde, Alonso Pérez-Donoso¹

1Departamento de Fruticultura & Enología, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile

Contact the author*

Keywords

drought, viticulture, gas exchange, water potential

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).