terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Optimization of the acquisition of NIR spectrum in grape must and wine 

Optimization of the acquisition of NIR spectrum in grape must and wine 

Abstract

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

This work focuses on the evaluation of the optimal parameters and pathlengths for fast measurement of the UV/VIS/NIR/MIR spectra in grape must and wine. The study was carried out with three different type of samples: (i) red wine cv Mencía, (ii) white wine cv Albariño, and (iii) grape must cv Albariño. Absorbance spectra were collected in rectangular quartz cuvettes of different optical pathlengths (1, 2, 5, and 10 mm) where different bandwidth parameters were tested.

The results indicated that increasing the optical pathlengths of the cuvettes increases the absorption intensity up to a saturation level (absorbance >2.5 units) at long wavelengths using long pathlengths (5 and 10 mm). The interpretation of the spectra also improves with 1 and 2 mm pathlengths. The bandwidth parameters evaluated indicated that using higher values, the spectrum appeared more defined, and the range of analysis was increased, reaching the MIR part of the spectrum.  In conclusion, the best combination of pathlength and bandwidth for the measurement of grape must and wine in the UV/VIS/NIR/MIR range is 1 mm of pathlength cuvette with the bandwidth set at 40 nm.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Manzano JI.1, Cozzolino D.2, Vilanova M.1

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)
2 Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, (Australia)

Contact the author*

Keywords

NIR, wine, must, cuvette, bandwidth

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.