terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Abstract

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region. ED was compared to a control non-defoliated (ND). Berry temperature was continuously monitored and normal heat hours (NHH) were calculated. Photosynthetic active radiation at cluster level (PARcluster) was monitored at five phenological stages (green berry (GB), pea size (PS), veraison (VER), mid-ripening (MR) and full maturation (FM). Various berry parameters were monitored: sugars, acidity, wax content, berry permeance, flavonoid compounds, abscisic acid (ABA) and related metabolites. As compared to ND, ED induced ~80% increase in PARcluster, and higher NHH. Consequently, accumulated temperatures above 35ºC were higher in ED than in ND. No differences in anthocyanin compounds were observed at FM, however, in ED the glucoside forms of anthocyanins reached their maximum concentration at MR. A high correlation was found between anthocyanins and NHH (r>0.83, p<0.01) as well as between flavonols and PARcluster (r=0.73, p<0.05). ABA was slightly higher in ND than in ED for the same NHH and after VER, ABA decreased faster in ED than in ND. ABA-GE increased exponentially from VER, reaching its maximum at MR in ND, while in ED it continued to accumulate through FM. Neither the wax content nor the cuticle permeance were affected by the ED treatment. Overall, ED induced changes in cluster-zone thermal and light microclimate which impacted berry ripening metabolism.

Acknowledgements: This research received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013), grant agreement nº 311775, Project Innovine.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Olfa Zarrouk1,2, Ricardo Egipto2,3, Carla Pinheiro4, Cecilia Brunetti5,6, Antonella Gori6, Massimiliano Tattini5, M. Manuela Chaves1, Carlos M. Lopes2

1 Plant Molecular Ecophysiology Laboratory. Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa, Oeiras, Portugal
2 LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
3 INIAV – Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
4 Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
5 IPSP – Institute for Sustainable Plant Protection, National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
6 DAGRI – Department of Agriculture, Environment, Food and Forestry, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy

Contact the author*

Keywords

ABA metabolism, anthocyanins, flavonols,
normal heat hours, Vitis vinifera, waxes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.