terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

Abstract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet. The European Union establishes that the limits for total SO2 content may not exceed 200 mg/L for red wines with a sugar content higher than 5 g/L, whereas the threshold for an adverse reaction varies between 5 and 200 mg/L SO2. The gut microbiome is now considered a therapeutic target for many pathologies and for general health status. Recent research has highlighted the potential of wine to modulate the gut microbiome, mainly attributed to its phenolic content and diversity. To our knowledge, very few studies have addressed the effects of sulphites on the gut microbiota, which could be mediated by the dietary matrix. Therefore, the novel question that arises is whether the presence of sulphites in wine may also affect our gut microbiome. To disclose this matter, we have designed an in vitro study based on the simulated gastrointestinal digestion in the simgi® simulator of the following comparative wines: a) synthetic wine, b) synthetic wine fortified with SO2 (200 mg/L), c) young red wine (2,8 mg/L of free SO2), and d) young red wine fortified with SO2 (200 mg/L). The following analyses were performed in the wines after intestinal and colonic (0, 6, 24, and 48h) digestions: free and bound SO2 by the PAUL-Rankine method (OIV-MA-AS323-04A), microbial plate counting, qPCR and 16S rDNA sequencing, microbial ammonium production, short chain fatty acids (SCFA) by SMPE-GCMS, and phenolic metabolites by UPLC-ESI-MSMS. The results indicate that, at least to some extent, the addition of sulphites to wine may have an impact on the gut microbiome, although this may be dependent on the composition of the wine, especially with regard to its phenolic content.

Acknowledgements: MICIN (PID2019-108851RB-C21 Project). The authors would also like to thank R. de Diego for sound technical assistance.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

E. Relaño de la Guia1, C. Cueva1, N. Molinero1, M.J.Motilva2,  B. Bartolomé1, M.V. Moreno-Arribas

1Institute of Food Science Research (CIAL), CSIC-UAM, 28049 Madrid, Spain
2Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

wine, SO2, gut microbiome, 16S rDNA sequencing, SCFA, phenolic metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.