terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Abstract

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate. These changes are influenced by factors such as the ageing process itself, cask characteristics (botanical origin, volume, toasting degree, previous usage), and pre-treatments like the sherry wine-seasoning process (Sherry Cask®)[2]. In this work, the physicochemical behaviours of wine spirits and wine distillates aged in Sherry Casks® and Brandy casks have been compared.

Methods: “Wine spirit” obtained at 77%ABV and “wine distillate” at 94.6%ABV were diluted with demineralized water to 68%ABV for ageing in American oak casks, medium toast, 500L of capacity and seasoned by 18%ABV Oloroso Sherry wine for 3 years (Sherry Cask®) and “Brandy casks” were only used for ageing brandy for 3 years. It was carried out in duplicate, following a static ageing for 2 years. Oenological parameters, chromatic characteristics, and total polyphenol index (TPI) were carried out according to OIV methodology. Volatile substances were determined by GC-FID.

Results: A substantial difference was observed between the distillates aged in Sherry Cask® and Brandy cask in the parameters influenced by ageing. Aged in Sherry Cask® showed greater increase in TPI and colour. These 2 types of distillates, despite their different initial characteristics, and therefore, their levels of volatile substances, show a similar evolution in the trends of these compounds.

Acknowledgements: The authors wish to thank the University of Cadiz (Spain) and Bodegas Fundador, S.L.U. (Spain) for the industrial predoctoral contract granted to the author Daniel Butrón Benítez.

References:

1) Regulation (EU) 2019/787 European Parliament and Council of 17 April 2019. L130/1-49 (Parlamento europeo y consejo de la unión europea., 2019).

2) Mosedale, J. R., & Puech, J.-L. (1998). Wood maturation of distilled beverages. Trends in Food Science & Technology, 9(3) (1998) 95–101. https://doi.org/10.1016/S0924-2244(98)00024-7

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Butrón-Benítez, Daniel1,2*; Valcárcel-Muñoz, Manuel J.2; García-Moreno, M. Valme1; Guillén-Sánchez, Dominico A.1

1 Departamento de Química Analítica, Facultad de Ciencias, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO) Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
Bodegas Fundador S.L.U., C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera (Cádiz), Spain.

Contact the author*

Keywords

Brandy, wine spirit, wine distillate, ageing, Sherry Cask®

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.