terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Advancing grapevine science through genomic research

Advancing grapevine science through genomic research

Abstract

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations. This is crucial for understanding genes linked to both disease and environmental stress resistance. The seminar will present a super-pangenome of North American Vitis species, constructed from diploid chromosome-scale assemblies, and introduce innovative panGWAS methods for investigating abiotic stress resistance in wild grape populations.

Acknowledgements: This work is supported by the National Science Foundation grant #1741627, a Specialty Crop Research Initiative Competitive Grant, Award No. 2022-51181-38240, of the USDA National Institute of Food and Agriculture, the E&J Gallo Winery, and the Louis P. Martini Endowment.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Dario Cantù

1Department of Viticulture and Enology, University of California, Davis

Contact the author*

Keywords

genome-enabled research, diploid genomes, chromosome-scale genome assembly, aroma genetics, domestication, flower sex determination, salt tolerance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process.

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1].

Studio dell’ambiente viticolo attraverso la parametrazione (punto di incrocio) delle curve di maturazione delle uve (pinot nero, oltrepo’ pavese pv italia settentrionale – 45° parallelo Nord)

Sono stati presi in considerazione alcuni dati agrometeorologici dell’Oltrepò Pavese (temperature e piovosità degli ultimi 80 anni) e gli studi delle curve di maturazione condotti in zona sul Pinot nero da spumante negli anni (1988-1991, 1999-2000, 2006-2008), si nota che l’aumento progressivo negli anni delle temperature attive (indice di Winkler) ha determinato un anticipo dell’invaiatura, definita dal parametro “punto di incrocio” (intersezione delle funzioni di zuccheri ed acidità nel tempo), con conseguente anticipo della data di vendemmia di circa 12-15 gg.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.