terclim by ICS banner
IVES 9 IVES Conference Series 9 Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Abstract

Context and purpose of the study

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity. Thus, the present study aims to characterize the aromatic composition of a large pool of Vitis vinifera cultivars through the analyses of some impacting aromatic compounds. Then, aromatic composition of traditional-Bordeaux varieties and non-Bordeaux varieties are compared.

Materials and Methods

A 2-hectares plot of 84 cultivars was planted in 2013, in the Médoc wine region (France) within the vineyards of a wine estate. Amongst this very large collection of cultivars, a pool of 25 red varieties was isolated, including traditional Bordeaux varieties and potential candidates for introduction in the Bordeaux varietal mix. Each of those varieties has been separately vinified since 2018 in 2hL stainless steel tanks, close to commercial wine production conditions. 46 major aroma compounds were then quanti- fied in each variety for each vintage (from three to five vintages per cultivar) by gas chromatography and mass spectrometry (GC-MS). Statistical analyses, including hierarchical clustering analysis (HCA) and principal component analysis (PCA) was then performed on this unique dataset for aroma profile characterization and to discriminate and isolate varieties according to their aromatic composition.

Results

As expected, analyses resulted in a strong varietal characterization of the different wines with a significant vintage effect on some of the aroma compounds. Of the 46 aroma compounds analyzed, a select few appear to explain a large part of the Bordeaux wines aromatic composition. Clustering of cultivars was possible, and Bordeaux cultivars group well together into a unique cluster. Interestingly, a few non-traditional Bordeaux cultivars were close to some of the classical Bordeaux varieties in both the HCA and PCA analyses. These results enhanced the idea that some non-native cultivars could be introduced in the Bordeaux cultivar mix while maintaining some of the wine typicity. This methodology could help other established wine regions to identify varieties that could be potential candidates for adaptation to climate change.

  1. Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J Wine Econ 2016, 11 (1), 150–167. https://doi.org/10.1017/jwe.2015.21.
  2. Destrac-Irvine, A.; Van Leeuwen, K. VitAdapt, an Experimental Program to Study the Behavior of a Wide Range of Grape Varieties of Vitis Vinifera in a Context of Climate Change in the Bordeaux Vineyards, 2018. https://hal.archives-ouvertes.fr/ hal-03179912 (accessed 2023-02-13).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marc Plantevin1, Cécile Thibon2,3, Julien Lecourt4, Justine Garbay2,3, Jean-Christophe Barbe2,3, Georgia Lytra2,3, Philippe Darriet2,3, Cornelis Van Leeuwen1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
4 Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

Aromatic Composition, Aroma Compounds, Climate Change, GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).