terclim by ICS banner
IVES 9 IVES Conference Series 9 ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

Abstract

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups. Such extreme strains called ACIDIC or DEMALIC have been compared in several grape juices in order to evaluate their technological and sensorial impact on the resulting wines. Beside routine phenotypic characterization (fermentation kinetics and basic enological analyses), targeted NMR metabolomic as well as LC-MS non targeted metabolomics were used for characterizing such group of strains. These ACIDIC or DEMALIC strains definitively challenge a wide range of industrial starters and provide new tools for managing the rising problem of acidity in the context of global warming change.

1. Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. Front Fungal Biol. 2021;2. doi:10.3389/ffunb.2021.733513

2. Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of malic-consuming Saccharomyces cerevisiae strains for winemaking. Efficiency and limits of a QTL’s driven breeding program. J Fungi. 2021;7: 1–25. doi:10.20944/pre- prints202103.0132.v1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Charlotte Vion 1,2, Marie Le Scanff 2, Muro Maïtena1,2, Bernard Margaux1,2, Richard Bruce1,2, Fautré Valentine1,2, Coulon Joana1, Pel- tier Emilien1,2, Le Mao Inès2, Richard Tristan2, Da Costa Grégory2, Marchal Axel2, Marullo Philippe1,2

1 Biolaffort, Bordeaux, FRANCE
2 UMR 1366 Œnologie, Univ. Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux INP, ISVV

Contact the author*

Keywords

Acidity perception, Malic acid, Wine yeast

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.