terclim by ICS banner
IVES 9 IVES Conference Series 9 Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Abstract

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray. The spray was applied to the top of the vine canopy for 15 minutes per hour during 12 daylight hours over the course of heat waves occurring between veraison and harvest. Heatwaves were defined as days with a minimum temperature of no less than 21 ⁰C and a maximum temperature of no less than 34 ⁰C. Two heat waves were identified over the course of the growing season. Temperature was measured at the canopy level (CT) while a weather station provided multiple climate parameters of the vineyard (VT). Samples were collected at weekly intervals from veraison to harvest. During 5 sample dates Leaf and Stem Water Potential (LWP, SWP), Stomatal Conductance (SC), Leaf Temperature (LT), Berry Temperature (BT), Chlorophyll Content (CC), Fluorescence (FV/FM), and Performance Index (PI) were collected at several intervals during the day to evaluate physiological responses. Berries were collected at each sample date as well as at harvest. Berry weights, soluble solids content, and pH were measured. At harvest, anthocyanin profile, kg/plant, number of bunches and their average weight were also evaluated. LWP, SWP, FV/FM, PI, SC, CC, Kg/plant, and BW, were significantly higher while LT, BT, and CT were lower in treated vines as compared to the control during the second heatwave, which was longer and more intense than the first one. One week after the more severe heatwave, LWP, SWP and SC were still significantly different between treatment and control, displaying reduced physiological stress in the treated vines. No differences were identified in the sum of total anthocyanins. However, some individual anthocyanins were higher in treated vines. These results suggest that vines with the overhead water treatment during heat waves had reduced physiological stress and increased yield. As a consequence, this practice could be used as a mitigating tool to reduce the impact of heat waves.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alena Wilson³, Marta Dizy², Deolindo Dominguez¹, Maria Inés de Rosas¹, Jesica Baldo⁴, Raquel Gargantini⁴, Leonor Deis¹, Liliana Martinez¹*

¹ Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Mendoza, Argentina.
² Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas, Gobierno
de La Rioja), Finca La Grajera, ctra. de Burgos km 6, 26007 Logroño, La Rioja, Spain.
³ Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco,
Italy.
⁴ Instituto Nacional de Vitivinicultura, Av. San Martin 430, Ciudad, Mendoza, Argentina.

Contact the author*

Keywords

red-blended-wine , molecular marker , Aroma compound , Sensorial attribute

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).