terclim by ICS banner
IVES 9 IVES Conference Series 9 Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Abstract

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray. The spray was applied to the top of the vine canopy for 15 minutes per hour during 12 daylight hours over the course of heat waves occurring between veraison and harvest. Heatwaves were defined as days with a minimum temperature of no less than 21 ⁰C and a maximum temperature of no less than 34 ⁰C. Two heat waves were identified over the course of the growing season. Temperature was measured at the canopy level (CT) while a weather station provided multiple climate parameters of the vineyard (VT). Samples were collected at weekly intervals from veraison to harvest. During 5 sample dates Leaf and Stem Water Potential (LWP, SWP), Stomatal Conductance (SC), Leaf Temperature (LT), Berry Temperature (BT), Chlorophyll Content (CC), Fluorescence (FV/FM), and Performance Index (PI) were collected at several intervals during the day to evaluate physiological responses. Berries were collected at each sample date as well as at harvest. Berry weights, soluble solids content, and pH were measured. At harvest, anthocyanin profile, kg/plant, number of bunches and their average weight were also evaluated. LWP, SWP, FV/FM, PI, SC, CC, Kg/plant, and BW, were significantly higher while LT, BT, and CT were lower in treated vines as compared to the control during the second heatwave, which was longer and more intense than the first one. One week after the more severe heatwave, LWP, SWP and SC were still significantly different between treatment and control, displaying reduced physiological stress in the treated vines. No differences were identified in the sum of total anthocyanins. However, some individual anthocyanins were higher in treated vines. These results suggest that vines with the overhead water treatment during heat waves had reduced physiological stress and increased yield. As a consequence, this practice could be used as a mitigating tool to reduce the impact of heat waves.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alena Wilson³, Marta Dizy², Deolindo Dominguez¹, Maria Inés de Rosas¹, Jesica Baldo⁴, Raquel Gargantini⁴, Leonor Deis¹, Liliana Martinez¹*

¹ Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Mendoza, Argentina.
² Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas, Gobierno
de La Rioja), Finca La Grajera, ctra. de Burgos km 6, 26007 Logroño, La Rioja, Spain.
³ Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco,
Italy.
⁴ Instituto Nacional de Vitivinicultura, Av. San Martin 430, Ciudad, Mendoza, Argentina.

Contact the author*

Keywords

red-blended-wine , molecular marker , Aroma compound , Sensorial attribute

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.