terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Abstract

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

This study was conducted on the vineyard of Agroscope in Changins (Switzerland) and focussed on four white grape varieties: Chardonnay, Sauvignon blanc, Gewürztraminer and Chasselas. Two treatments were set up (i.e, foliar N fertilisation at veraison and no fertilisation) for three years. Wine was produced for each treatment. The composition of the grapes was analysed at harvest and the potential indicators of N deficiency, mentioned above, were quantified in the wines. In addition, sensorial analysis of wines was carried out and highlighted the fact that wines from N-deficient must, regardless of grape variety, were less appreciated.

Nitrogen fertilisation significantly increased must N concentration (NH3 and amino acids (AA)) for all grape varieties, although the gain was related to the grape variety. Grape varieties influenced both the concentration and profile of AA in must. Nitrogen concentration in must was positively correlated with proline (R2 = 0.656) and propan-1-ol (R2 = 0.579) concentration in wine and negatively correlated with succinic acid, 2-phenyl-ethanol and catechin quantities in wines (R2 = 0.369; 0.368 and 0.266 respec- tively). Grape variety affected the concentration of all N deficiency indicators in wine (p < 0.05).

These results confirm that the chemical markers, initially proposed for Chasselas, can be used for other white wines. However, the threshold of the markers in wine, indicating N deficiency in grape juice, must be determined for each grape variety separately.

1. Dienes-Nagy, ., et al. (2020). Identification of putative chemical markers in white wine (Chasselas) related to nitrogen deficiencies in vineyards. OENO One, 54(3), 583–599

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Thibaut, VERDENAL1, Jean-Laurent SPRING1, Marie BLACKFORD1, Fabrice LORENZINI1

1. Agroscope, Nyon, Switzerland

Contact the author*

Keywords

nitrogen deficiency, chemical markers, white wine, amino acid

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.