GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Abstract

Context and purpose of the study Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield. Taking into account that predicted future warmer conditions will possibly impose challenges in global viticulture, it is of outmost importance to understand the adaptive capacity of each variety in the current and future climate conditions. Thus, the objective of this study was twofold: (a)to investigate the relationships between air temperature during the ripening period and harvest dates for eight principally cultivated indigenous winegrape varieties (one for each winegrape region of Greece) and (b) to assess varieties’ thermal demands (four varieties) using the standard growing degree day (GDD) formula and project harvest date in two future windows using a multi-Regional Climate Model ensemble dataset.

Material and methods Harvest dates were assembled from four white [cvs. Muscat of Alexandria (Limnos), Assyrtiko (Santorini), Muscat blanc (Samos) and Athiri (Rodos)] and four red [cvs. Moschofilero (Tripoli), Mavrodaphni (Pyrgos), Mandilaria (Crete) and Xinomavro (Naoussa)] varieties, covering a period from 11 to 44 years. Daily observations of maximum (TX) and minimum (TN) air temperature were obtained from the Hellenic National Meteorological Service (HNMS) in order: (a) to investigate the relationships between harvest dates and temperature conditions during the ripening period and (b) to o calculate growing degree days (GDD, C units) for each variety. In addition, high resolution ensemble datasets (derived from 5 model experiments) with the two representative concentration pathways 4.5 (RCP4.5) and 8.5 (RCP8.5) were employed to project harvest dates for two future time windows [future projection 1 (FP1): 2041-2065 and future projection 2 (FP2): 2071-2095]. Pearson’s correlation coefficient was used to investigate relationships between air temperature and harvest date. Statistical significance was set at p< 0.05.

Results Harvest dates showed negative trends in six out of eight cases (four cases statistically significant) while in two areas (Crete and Pyrgos) harvest occurs later. In addition, harvest date – temperature analysis showed significant negative relations in seven out of eight cases. Rodos (cv. Athiri) was the only case with a significant positive relationship. Heat requirement analysis revealed that two varieties (cvs. Muscat of Alexandria and Moschofilero) needed almost 1700 GDD to achieve full maturity while the other two varieties (cvc. Mavrodaphni and Xinomavro) exceeded 2000 GDD units (2021 and 2049, respectively). Future projection analysis showed that harvest will shift earlier for all varieties (ranging approximately from one to two months) and this shift in both time windows will depend on the variety and the selected emission scenario. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Georgios C.KOUFOS (1), Theodoros MAVROMMATIS (1), Stefanos KOUNDOURAS (2), Gregory V. JONES (3)

(1) Department of Meteorology and Climatology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(2) Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(3) Center for Wine Education, Linfield College, McMinnville, Oregon, USA.

Contact the author

Keywords

 Grape variety, Heat requirements, Climate change, Regional climate models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures