terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

Abstract

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their num- ber and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

The aim of this work is to identify some plant biopolymers, other than Acacia senegal gum, allowing the colloidal stability of the coloring matter of red wines, and satisfying the technical (solubility and non-clogging) and sensory requirements of wine making. The selected plant biopolymers should also significantly improve the coloring matter colloidal stability.

Nine natural different plant biopolymers were used in this study. Their biochemical composition (protein and carbohydrate contents, amino acids and sugar compositions) and structural properties (Molar mass, polydispersity and intrinsic viscosity) were characterized. The colloidal stability proper- ties of all biopolymers were evaluated in comparison to Acacia senegal gum on three different matrices: a mineral-hydro-alcoholic solution corresponding to the test recommended by the oenological codex (COEI-1-GOMARA:2000), a hydro-alcoholic-grape marc solution, and unstable red wines.

The use of nine natural different plant biopolymers allowed to identify their intrinsic biochemical and structural properties essential for the colloidal stability of the coloring mater. Among these nine plant biopolymers, one of them presents interesting colloidal stabilization properties towards the coloring matter. This plant biopolymer possesses superior colloidal stability properties than Acacia senegal gum and good clogging index. Its quantity in red wines can be reduced between 5 and 10 while maintaining the colloidal stability of the coloring matter and allowing the filtration of red wines. This increased effi- ciency towards the colloidal stability of the coloring is correlated to the intrinsic biochemical and struc- tural properties of this exudate. This natural exudate could therefore be of interest for its use in enology.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Maria Antonieta Anaya-Castro1,2, Thierry Doco², Pascale Williams², Céline Charbonnel¹, Virginie Moine³, Arnaud Massot³, Phi-lippe Louazil³, Isabelle Jaouen⁴, Christian Sanchez¹ and Michaël Nigen¹

1. UMR1208 Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier-INRAE- Institut Agro Mont-pellier Supagro, 2 Place Pierre Viala, F-34060, Montpellier, France
2. UMR 1083 Science Pour l’Œnologie, INRAE- Institut Agro Montpellier Supagro-Université Montpellier, 2 Place Pierre Viala, F-34060, Montpellier, France
3. BIOLAFFORT, 11 rue Aristide Bergès, 33270 Floirac, France
4. ALLAND & ROBERT, ZAC des Champs Chouette – Rue du Bois Saint Paul – 27600 Saint Aubin Sur Gaillon, France

Contact the author*

Keywords

Plant exudate, Coloring matter, Colloidal stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.