terclim by ICS banner
IVES 9 IVES Conference Series 9 REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Abstract

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level. In this study, six grapevine varieties (Syrah, Petit Syrah, Petit Verdot, Tempranillo, Sangiovese, and Pinot Noir), grown in Ramat Negev (30°58’43.4″N 34°42’31.6″E, 300 m asl and 79.4 mm rainfall) experimental vineyard showing different sugar accumulation patterns between temperature regimes were studied during a heatwave event. The physiological activities of these varieties were measured at three different times (7am, 12pm and 6 pm) during the heatwave. GC-MS based metabolite profiling and targeted transcript analysis were used to study the central metabolism in leaves in response to increasing temperature from morning to evening. Results showed that Pinot Noir had higher rates of transpiration, stomatal conductance and photosynthetic assimilation compared to Syrah. The metabolite profiling analysis revealed that the metabolic activity was generally higher in the morning for all varieties, decreasing during noon and evening. This research provides valuable insights into the impact of global warming on grapevine metabolism and the potential implications for wine production.

 

1. Alleweldt, G., Dettweiler-Munch, E., (1992) The genetic resources of Vitis. Genetic and geographic origin of grape cultivars, their prime names and synonyms.-Siebeldingen, Federal Republic of Germ⟨ny: Institut f? r Rebenz? chtung Geilweilerhof.
2. Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carb metabolis and climate change: elevated CO₂ and temperature im-pacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32–49. https://doi.org/10.1111/nph.15283 
3. Reshef, N., Fait, A., & Agam, N. (2019). Grape berry position affects the diurnal dynamics of its metabolic profile. Plant Cell and Environment, 42(6), 1897–1912. https://doi.org/10.1111/pce.13522
4. Gashu, K., Sikron Persi, N., Drori, E., Harcavi, E., Agam, N., Bustan, A., Fait, A., (2020) Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Frontiers in plant science 11, 1739.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nang Cherry¹ , Pankaj Kumar Verma², Kidanemaryam Wagaw¹ and Aaron Fait²

1. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

Grape (Vitis vinifera), high temperature, metabolite, transcript profiling

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.