terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

Abstract

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.

Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

In this work, we selected four YCW derived from two different yeast genera (Brettanomyces/Dekkera and Saccharomyces) prepared by two processes, autolysis or with a high-pressure homogenizer (HPH). We investigated the effects of both genus and treatment on the capacity of adsorption of CA and EP. The operating parameters affecting adsorption, such as contact time, sorbent dosage, and initial CA and EP concentration, were studied to evaluate their influence on the adsorption capacity. The competition between the two adsorbates on the sorption sites was also investigated.

The adsorbed amounts of CA and EP by the YCW increased as the concentration of the adsorbent increased, regardless of their initial concentration. This might be explained by the increase in active vacant sorption sites and surface area available for the adsorption of CA and EP.

At equilibrium, the specific adsorption capacity of YCW increased when the initial concentration of adsorbate increased. The resistance to mass transfer of the adsorbate between liquid and solid phases is overcome by the driving force, which is determined by the initial concentration of the adsorbate. As the adsorbate’s initial concentration increased, the concentration gradient’s driving force increased, which explains the increase in adsorption.

The specific adsorption capacity decreased when the two adsorbates were together in the medium. First, the adsorption capacity of EP is higher than CA, indicating that EP has specific sites on the YCW that are different from CA. Second, the adsorption capacity is higher when the adsorbate is alone in the medium, implying competition between the two adsorbates. There are probably some common sites for CA and EP on YCW.

 

1. C. S. D. Costa, B. G. M. Queiroz, R. Landers, M. G. C. da Silva, and M. G. A. Vieira, “Equilibrium study of binary mixture biosorption of Cr(III) and Zn(II) by dealginated seaweed waste: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis,” Environ. Sci. Pollut. Res. Int., vol. 26, pp. 28470–28480, 2019.
2. S. Mor, K. Chhoden, K. Ravindra, and R. Khaiwal, “Application of agro-waste rice husk ash for the removal of phosphate from the wastewater,” J. Clean. Prod., vol. 129, pp. 673–680, 2016.
3. A. B. Albadarin, C. Mangwandi, A. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chem. Eng. J., vol. 179, pp. 193–202, 2012.
4. Senthil Kumar, P., Vincent, C., Kirthika, K., & Sathish Kumar, K., Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, 27(2), 339–346.
5. Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., & Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using Kaolin as an adsorbent. Separation Science and Technology, 2008, 43(6), 1382–1403.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Elena Bakhos1,2,3, Dominique Salameh2, Nathalie Sieczkowski3, Cedric Brandam1

1. Laboratoire de génie chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. Université Saint-Joseph de Beyrouth, Faculté des sciences, Mar Roukos, Liban
3. Lallemand SAS, Blagnac, France

Contact the author*

Keywords

4-ethylphenol, biosorption, yeast cell walls, competitive adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.