terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

Abstract

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Different types of wines in terms of region, grape variety, oak aging and price were subjected to an oxidative aging procedure, sensory analysis, gas-chromatography olfactometry (GC-O) and quantitative analysis. Sensory notes such as dried fruit, cooked vegetables or liquorice-alcohol were oxidation-related. The GCO analysis of the samples with highest oxidation notes, revealed highest levels of four odour zones, which were identified in a dual system GC-O/FID-GC-O/MS as 1,1-diethoxyethane (liquor, strawberry, sweet), 2,4,5-trimethyl-1,3-dioxolane (fruity, solvent), 3-methylbutanal (solvent, yeasty) and methional (boiled potato, cooked vegetables).

The two aldehydes were quantified by gas chromatography-mass spectrometry (GC-MS). together with isobutanal, 2-methylbutanal and phenylacetaldehyde. All them were already present in significant amounts before oxidation. However, as they were forming odourless reversible adducts with SO₂ (α-hydroxyalkylsulphonates)1 they were initially non-odour active. However, as free SO₂ disappeared during oxidation² they become odour-active in oxidized samples. Additional quantities were formed during oxidation, most likely by the reaction of wine dicarbonyls with the amino acid precursors. This additional formation was particularly relevant for 2-methylbutanal, followed by methional and isobutanal, while for phenylacetaldehyde and 3-methylbutanal, quantities formed were smaller than those originally present. These results confirm that both, pre-existent levels of Strecker aldehydes and the ability to form them during oxidation, are relevant in wine stability.

Acetals were determined by L-L microextraction followed by GC-MS. Results revealed that during oxidation there is a clear increment on the levels of acetals formed from the condensation of acetaldehyde with ethanol, 2,3-butanediol and glycerol; leading to 1,1-diethoxyethane, 2,4,5-trimethyl-1,3-dioxolane and several heterocyclic acetals, respectively. Levels formed were high enough to be odour-active. This suggests that the formation of acetals is an essential part of the sensory changes noted during wine oxidation.

 

1. L.C. de Azevedo et al., Journal of Agricultural and Food Chemistry 2007, 55 (21)
2. M. Bueno, V. Carrascón & V.Ferreira. Journal of Agricultural and Food Chemistry 2016, 64 (3)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

A. M. Aragón-Capone¹, A. de-la-Fuente-Blanco¹, M.P. Saenz-Navajas², V.Ferreira¹, M.Bueno¹
1. Laboratorio de Análisis del Aroma y Enología (LAAE), Departamento de Química Analítica, Universidad de Zaragoza, Institu-to Agroalimentario de Aragón (IA2) (UNIZAR-CITA).Associated to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
2. Instituto de Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), Departamento de Enología, Logroño, La Rioja, Spain.

Contact the author*

Keywords

Chemosensory analysis, Gas chromatography-olfactometry (GC-O), Oxidative aging, Wine’s longevity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.