terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Abstract

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1]. Moreover, triggered by the presence of ethanol in wines, the Marangoni effect increases the exhaust of flavored molecules in the glass headspace [2]. In addition, ethanol is known to modify the orthonasal detection threshold of aromas (and especially the fruity aromas [2]), and it can also trigger the trigeminal system leading to tingling and/or warm sensation [2]. Monitoring gaseous ethanol, in space and time, in the headspace of wine glasses is therefore crucial to better understand the neuro-physicochemical mechanisms responsible for aroma release and flavour perception.

For this purpose, micro-gas chromatography was used in the past to simultaneously monitor gas-phase ethanol and CO₂ in the headspace of champagne glasses, but with a relatively poor temporal resolution leading to a one-minute data sampling interval [3], [4]. Since the last decade at GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique), tunable diode laser absorption spectroscopy has shown to be a well-adapted method to accurately monitor gas-phase CO₂ in the headspace of glasses poured with champagne [5]. The tunability of semiconductor laser with current modulation provides CO₂ monitoring with a high temporal resolution of 42 measurements per seconds. Lastly, thanks to the recent interband cascade laser (ICL) technology, the CO₂ sensor was upgraded to monitor gaseous ethanol. This new quantum laser source, combined with previous technology developed for the monitoring of gas-phase CO₂, al-lowed us to simultaneously monitor gas-phase CO₂ and ethanol under standard still wine and sparkling wine tasting conditions. The first data sets obtained in the headspace of a glass poured with a standard brut-labelled Champagne wine are presented.

 

1. G. Liger-Belair and C. Cilindre, “Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines,” Annu. Rev. Anal. Chem., vol. 14, pp. 21–46, 2021.
2. C. M. Ickes and K. R. Cadwallader, “Effects of Ethanol on Flavor Perception in Alcoholic Beverages,” Chemosens. Percept., vol. 10, no. 4, pp. 119–134, Dec. 2017.
3. C. Cilindre, A. Conreux, and G. Liger-Belair, “Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC),” J. Agric. Food Chem., vol. 59, no. 13, pp. 7317–7323, 2011.
4. G. Liger-Belair, M. Bourget, H. Pron, G. Polidori, and C. Cilindre, “Monitoring gaseous CO 2 and ethanol above champagne glasses: Flute versus coupe, and the role of temperature,” PLoS One, vol. 7, no. 2, pp. 1–8, 2012,.
5. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., vol. 69, no. 7, pp. 2262–2270, 2021.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Florian Lecasse¹, Raphaël Vallon¹, Vincent Alfonso¹, Bertand Parvitte¹, Clara Cilindre¹, Virginie Zeninari¹, Gérard Liger-Belair¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Ethanol, Champagne, Interband Cascade Laser, Spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides, proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality. Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant, and antihypertensive potentials. However, the peptides detected in wine can be influenced by the interaction between yeasts and grape components.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.