terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Abstract

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

For this purpose, this equipment has been designed, built and prepared and has been validated with the measurement of red wines made from different grape varieties.

The equipment built has 2 mm quartz cuvettes for the measurement of the spectrum in the visible with a spectrophotometer and a sensor for the simultaneous measurement of dissolved oxygen with a luminescent measurement system, both measurements were carried out every 15 minutes during oxy-gen consumption. The tightness of the cuvettes during the process of measuring the kinetics of oxygen consumption was evaluated, as well as the reproducibility of the measurements of both parameters.

The results of this study show that the equipment designed and built is valid for monitoring the kinetics of oxygen consumption with the simultaneous measurement of the spectrum in the visible and dissolved oxygen. The tightness tests corroborated that all the cells used simultaneously are airtight, keeping their interior totally isolated from the exterior, showing a variability between cells of less than 10%. The results of the repeatability tests showed that the same wine measured simultaneously in the different cuvettes showed the same results both in the measurement of the consumption kinetics and in the measurement of the spectrum in the visible. The application of the system developed for the study of red wines allowed to know the characteristics of the consumption kinetics, obtaining that all red wines were initially able to take up the same amounts of oxygen (Omax), with values of 174 hPa. However, the wines made with Tempranillo grapes showed higher oxygen consumption (∆Omax_min), 115 hPa, and lower residual oxygen values (Omin), 59 hPa compared to than those made with the Garnacha grapes with 84 y 88 hPa of Omin and ∆Omax_min, respectively. One of the main advantages of this equipment is the ability to record the changes produced in the spectrum as the wine consumes oxygen, thus, an increase in red tones (450 and 580 nm) was observed in all the wines studied. It was found that the wines made with the Garnacha grapes underwent increases in absorbance between 400 and 460 nm and between 610 and 670 nm as they consumed oxygen, indicating an increase in the compounds responsible for the purple and yellow hues. On the other hand, wines made with the Tempranillo grapes, as they consumed oxygen, showed a decrease in purple hues.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marioli Alejandra, Carrasco-Quiroz ¹, Ignacio Nevares ², Ana Martinez-Gil ¹, Rubén Del Barrio-Galan ¹. Maria Asensio-Cuadrado ², Maria Del Alamo-Sanza ¹
1. Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain.
2. Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author*

Keywords

Oxygen consumption, colour, wine, kinetics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.