terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Abstract

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

In order to assess smoke impact, a selection of volatile and glycosylated phenols is proposed, mainly based on research from Australia (2, 3). It includes the volatile phenols guaiacol, 4-methylguaiacol, ortho-, meta- and para- cresol, phenol, syringol, and 4-methylsyringol, as well as their glycosylated forms guaiacol rutinoside, 4-methylguaiacol rutinoside, cresol rutinoside, phenol rutinoside, syringol gen-tiobioside, and 4-methylsyringol gentiobioside. The accurate and reproducible measurement of these compounds is now possible, due to the commercial availability of standards and isotopic analogues.

In this study, we investigated the stability of these markers in bottled wines from smoke-exposed grapes, during a two-year timeframe. Wines monitored were a Chenin Blanc and a Chardonnay (whites), a Grenache (rosé), two Cabernet Sauvignons, a Zinfandel and a Grenache (reds).

No significant increases in guaiacol were observed in the white and rosé wines. Slight increases (2-3 μg/L) were observed in red wines, with the exception of the Pinot Noir (9 μg/L). Non-significant to slight increases were observed for phenol, except in the Zinfandel (10 μg/L). Large increases were observed for syringol in red wines only, especially in Cabernet Sauvignons (up to 60 μg/L). No significant increases were observed for the other volatile phenols measured.

All measured glycosylated markers were stable, in all wines. Therefore, increases in volatile phenols, when they happened, were not explained by the hydrolysis of corresponding glycosylated forms measured.

The observed increases in guaiacol and syringol, as well as the stability of the glycosylated forms measured, are consistent with results from a previous study (4). The stability of glycosylated markers makes them relevant in identifying wines from smoke exposed grapes, possibly for many years after bottling. A limitation is that some smoke impacted wines might show normal or even non-detectable levels of these glycosylated markers.

 

1. Christine M. Mayr, Mango Parker, Gayle A. Baldock, Cory A. Black, Kevin H. Pardon, Patricia O. Williamson, Markus J. Herderich, and I. Leigh Francis.  2014. Determination of the Importance of In-Mouth Release of Volatile Phenol Glycoconjugates to the Flavor of Smoke-Tainted Wines. Journal of Agricultural and Food Chemistry  62 (11), 2327-2336
2. Hayasaka, Y., Parker, M., Baldock, G.A., Pardon, K.H., Black, C.A., Jeffery, D.W. and Herderich, M.J. (2013) Assessing the impact of smoke exposure in grapes: development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke derived phenolic glycosides in grapes and wine. Journal of Agricultural and Food Chemistry 61, 25–33.
3. Krstic, M.P., Johnson, D.L. and Herderich, M.J. (2015) Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Australian Journal of Grape and Wine Research 21, 537–553.
4. Renata Ristic R., Lieke van der Hulst L., Dimitra L. Capone, and Kerry L. Wilkinson. Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars. 2017.
5. Journal of Agricultural and Food Chemistry 65 (20), 4146-4152

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Eric Hervé¹, Darren Gullick¹ , Azeem Hasan¹, Anindya Pradhan¹, Gordon Burns¹

1. ETS Laboratories, 899 Adams St. Suite A, St. Helena, CA 94574, USA

Contact the author*

Keywords

smoke impact, volatile phenols, glycosylated phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).