terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

Abstract

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions. The measured parameters included: 1) sugars, organic acids and %ABV (measured by specific enzymatic methods or by OIV reference methods), 2) dissolved oxygen (measured according to OIV protocols), 3) semi-quantitative determination of pigments, profile of non-anthocyanidin phenols, and profile of condensed tannins (LC-QqQ/MS [1]), spectrophotometric indexes (Hue and Intensity), colorimetric indexes (CIELab parameters), and the volatile profiles (GCxGC-ToF/MS [2]). A striking relation among the abundances of four anthocyanidin monoglucosides (peonidin-3-glu, malvidin-3-glu, petunidin-3-glu, and cyanidin-3-glu) has been observed in the musts from frozen grapes, but not in wines from frozen or non-frozen grapes. Cyclic procyanidins showed neither significant differences in concentration in must and wine due to any specific applied factor, nor due to specific treatments (such as with bentonites), proving again their applicability as markers for the grape variety in wine [3]. A substantial drop in peonidin-3-glu over the vinification (the main anthocyanin in Schiava cv. grapes) was studied in relation to the applied study factors. Grape freezing increased the extraction of peonidin-3-glu in the must, though the rate of its subsequent loss was faster than in wines from non-frozen grapes. Nonethe-less, peonidin-3-glucoside was still more concentrated in the wines from frozen grapes than in wines from non-frozen grapes up to wine bottling. The wines made from frozen grapes and without malolac-tic fermentation had the highest colorimetric parameters a* (green→red), ΔE* (difference in colour), C* (chromaticity), and ΔH* (difference in tone) colorimetric parameters. b* (blue→yellow) was highest in wines from frozen grapes, but regardless of the application or not of the malolactic fermentation.

 

1. C Dupas de Matos, A., Longo, E., et al. (2020). Foods, vol. 9(4), p. 499
2. Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, vol. 26(20), p. 6245
3. Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, vol. 299, p. 125125

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edoardo Longo1,2,*,†, Aakriti Darnal1,2, Adriana Teresa Ceci1,2, Simone Poggesi1,2,3, Tanja Mimmo², Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13/B, 39100 Bolzano (Italy)
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy)
3. Food experience and sensory testing laboratory (Feast), Massey University, Private Bag 11222, Palmerston North 4410 (New Zealand)

Contact the author*

Keywords

Colour instability, Grape freezing, Chemical profile, Colorimetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.