GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

Abstract

Context and purpose of the study – The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties. The aim of the present study was to evaluate the quality and the ripening process of Pinot blanc grape by a non-destructive fluorescence-based sensor.

Material and methods – The study was performed on two vineyards of cv. Pinot blanc located in the Adige Valley (South Tyrol, Bolzano), in two consecutive vintages. The vineyard differed in the row orientation, east-west or north-south, and then on the sun light exposure of the grape-bunches. The grape phenolic maturity was assessed on intact berries by six measurements from bunch closure to harvest time. In each vineyard, 25 grape-bunches per row sides were flashed by Multiplex® 3.6 (Force-A, Orsay, France), for a total of 3 rows and 150 grape-bunches/measurement. The instrument indices of chlorophyll (SFR_R) and flavonols (FLAV_UV) were considered. Standard grape maturity tests were performed to assess total soluble solids (TSS) and total acidity content of the grape juice by spectroscopic method. At maturity the grapes were processed with a standard vinification protocol for white wines. Total polyphenolic content of wines was determined by a spectrophotometric analysis.

Results –A linear decrease of SFR_R index in the berry-skin during the grape ripening period was recorded. Interestingly, SFR_R values negative correlated with the TTS accumulation in Pinot blanc berries. On the other side, positive correlations between SFR_R and titratable acidity, malic acid and tartaric acid content, were observed. The FLAV_UV index showed an increasing linear trend during the grape ripening period. At harvest, significant difference in FLAV_UV index between the two vineyards was observed. Looking more deeply inside the data, the berry-skin FLAV_UV index significantly differed among the four sun-light expositions, with greater values recorded for the grape-bunches located in south and east sides of the vineyard rows. These results are in accordance with the available literature on the role flavonols as sun-burn protection compounds. Interestingly, the total polyphenolic content of the produced wines showed a positive correlation with the final FLAV_UV values measured in the berry-skin. In conclusion, the Multiplex® indices could improve precision viticulture strategies, such as the implementation of precision harvest practices. Indeed, SFR_R index could be used to indirectly evaluate the whole ripening process of white grapes in term of grape sugar content and acidity, while FLAV_UV could provide useful indications to winemakers about taste of final product. Future studies will be necessary to better correlate the berry-skin FLAV_UV values and the flavours of white wine.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Selena TOMADA1*, Florian PICHLER1, Julia MARTINELLI1, Giovanni AGATI2, Valentina LAZAZZARA3, Martin ZEJFART4, Fenja HINZ3, Ulrich PEDRI4, Peter ROBATSCHER3, Florian HAAS1

1 Department of Viticulture, Laimburg Research Centre, BZ, Italy
2 Istituto di Fisica Applicata ‘Nello Carrara’, CNR, FI, Italy
3 Laboratory for Flavours and Metabolites, Laimburg Research Centre, BZ, Italy
4 Department of Enology, Laimburg Research Centre, BZ, Italy

Contact the author

Keywords

Chlorophyll, Flavonols, Grape, Multiplex®, Quality, Pinot blanc

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Caractérisation des terroirs viticoles champenois

The Champagne vineyard extends over 35,300 ha under the Appellation d’Origine Contrôlée, of which 30,000 are in production. It mainly covers 3 departments: in order of importance, Marne (68% of the appellation area), Aube (22%) and Aisne (10%), and more anecdotally Haute Marne and Seine and Mame. It is a young vineyard (for more than half of the surface, the winegrowers have the experience of only one generation of vines), and fragmented (more than half of the exploitations extend over less than 1 ha; the average size of a cadastral parcel is 12 ares).

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.