WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Abstract

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France). During the alcoholic fermentation of the must when H2S appeared additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. Free volatile compounds were analyzed using GC-MS techniques. Analyses during the alcoholic fermentation process of the Lugana wines indicate that Zymaflore Delta developed higher concentrations of H2S than the other. Instead observing the influence of the different nitrogen nutrients it can be said that the best solution to limit the formation of H2S is to use the mix of organic and inorganic nitrogen. For almost all the biochemical classes of the analysed compounds, a statistically significant difference was shown about the yeast variable. Regarding the differences given by the variable of nitrogen nutrition, however, it is shown that all classes are influenced by it. With regard to Lugana wines fermented with Zymaflore Delta, the addition of the mix of organic and inorganic nitrogen led to higher concentrations of α-terpineol, the use of organic nitrogen favored a higher presence of TDN, and the use of this type of nitrogen added with methionine led to higher concentrations of α-terpineol. On the other hand, wines fermented with Zymaflore X5, the addition of the nitrogen nutrition mix during fermentation resulted in higher concentrations of norisoprenoids, while the addition of organic nitrogen and methionine resulted in higher levels of DMS, linalool, α-terpineol and methyl salicylate. This study showed that the choice of yeast proved to be the variable with the greatest impact on the volatile chemical profile of the wines studied. Furthermore, the choice of nitrogen nutrient had a significant impact on the production of volatile compounds but did not follow a specific trend within the classes of compounds that could be defined as improving or worsening the general aromatic profile of the wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Beatrice, PERINA, Virginie, MOINE, Davide, SLAGHENAUFI, Giovanni, LUZZINI, Maurizio, UGLIANO

Presenting author

Beatrice, PERINA – Department of Biotechnology, University of Verona

Biolaffort, France | Biolaffort, France | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona,

Contact the author

Keywords

Lugana wine, White wine, Nitrogen nutrition, Aroma compound, GC-MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2).

Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

The dynamic evolution of some bioclimatic indices largely used to define the vocation of areas to grape growing was assessed over 43 years (1965-2007) in four sites of the Abruzzo Region (Central Italy).

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.