GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Hydraulic redistribution and water movement mechanisms in grapevines

Hydraulic redistribution and water movement mechanisms in grapevines

Abstract

Context and purpose of the study – Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution. The objectives of the present study were: (1) to determine the pathways of water transport through the vine form wet soil areas to the dry areas; (2) to determine the potential phloem contribution to this water movement.

Material and methods – This study used deuterium-labeled water (2H2O) as a tracer of water movement. Own-rooted Vitis vinifera L. cv. Merlot grapevines were grown in three-way split root pots. One of the three compartments was irrigated with 2H2O and the other two were left to dry. The trunk in one of the dry compartments was girdled and the other one was left intact to distinguish xylem and phloem water movement. Xylem sap and phloem sap, trunk and root tissue, and soil samples were collected. Water from each sample was extracted via a cryogenic method and analyzed for deuterium enrichment (δ2H).

Results – Following 2H2O supply to the roots, strong deuterium enrichment was found in both xylem and phloem sap collected from petioles. Moreover, the δ2H values were significantly higher in root tissues and soil collected from the dry/intact compartment than in samples from the dry/girdled compartment. These results indicate water moves from roots in wet soil to leaves via the xylem and recycles from leaves to roots in dry soil via the phloem. This xylem-to-phloem redistribution in drought-stressed grapevines keeps roots in dry soil alive, as long as a portion of the root system has access to soil water. The success of irrigation strategies such as partial rootzone drying may be linked to this physiological process.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Nataliya SHCHERBATYUK1, Markus KELLER1*

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, 99350, WA, USA

Contact the author

Keywords

Grapevine, Xylem, Phloe, Drought, Water Redistribution, Hydraulic Lift, Deuterium

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Territorial delimitation of viticultural “Oltrepo Pavese (Lombardy)” using grape ripening precocity

L’Oltrepò Pavese est une zone de collines de la Lombardie, région située au nord de l’Italie avec un vignoble qui s’étend sur près de 15 000 ha. Cette zone représente la plus grande aire de production de la région et une des A.O.C. les plus étendues de tout le pays. Les cépages les plus cultivés, même historiquement, sont autochtones : la Barbera et la Croatina utilisés pour la production de vin rouge «Oltrepò» et le Pinot noir pour la production de vins mousseux. Pour le zonage viticole de cette A.O.C., il a été pris en considération: le climat, les sols, les caractéristiques viti-vinicoles.

Varietal thiol precursors in Trebbiano di Lugana grape and must

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change