GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Abstract

Context and purpose of the study ‐ Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible. It is therefore important to gain further knowledge on the responses of plant species of agricultural importance to realistic water shortage extents, and their consistencies. A valuable model for water stress studies has been the grapevine (Vitis vinifera L.), a species with a high variability in their stomatal sensitivity to water stress. In contrast to usual agricultural practices, grapevines for oenological purposes are grown under controlled water stress conditions.

Material and methods ‐ In the abovementioned context, we aimed to study the physiological responses to a progressive, not severe (Ѱpd > ‐1MPa), water deficit in the grapevine varieties Syrah and Carménère, in two consecutive season using different sites each year, and with different row orientation. We assessed a) the relationship between the water status of plants and the stomatal responses to water availability; b) the hydraulic traits derived from Ѱ isotherms (pressure vs volume curves); c) the impact of the water stress on the hydraulic traits derived from the pressure vs volume curves and on photosynthetic responses; d) the stomatal sensitivity to ABA (only on one of the study sites) and e) their stem hydraulic vulnerability in relation to xylem characteristics.

Results – Acording to the Ѱleaf/Ѱpd relationship (), and contrary to various previous reports, we found Syrah to be an isohydric grapevine variety, while Carménère, an emblematic variety cultivated in Chile, behaved as anisohydric. Syrah resulted to be more variable in terms of , gs50 and gs12 (the pd upon which stomata is reduced down to a 50% and 12%), 0 and tlp (the at full turgor and the  at turgor loss point), likely associated to the higher genetic variability of Syrah compared to that of Carménère. Also, Carménère, the anisohydric variety was capable of osmotic adjustment and was more sensitive to ABA at the stomatal level, two traits typical of anisohydric species, contrary to that observed in Syrah. Even though the capacity to maintain stomata open, theoretically, would imply a lower energy load into the photosynthetic systems, both varieties reduced their photosynthetic capacity up to a similar extent upon drought. Finally, Syrah, despite having wider xylem vessels than Carménère, is less vulnerable to cavitation, and had a lower hydraulic safety margin, typical of isohydric species. We will discuss our results in terms of the genetic variability of the varieties regarding the consistency of their hydraulic responses, the importance of the environment, the degree of isohydry in relation to stomatal responses to critical thresholds as well as drought resistance, and the implications for photosynthesis in the long term. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luis VILLALOBOS‐GONZÁLEZ (1), Constanza QUINTANA (1), Dayna DONAIRE (1), Mariana MUÑOZ‐ ARAYA (1), Nicolás FRANCK, Claudio PASTENES (1)

(1) Universidad de Chile, Facultad de Ciencias Agronómicas.

Contact the author

Keywords

ABA sensitivity, anisohydry, drought resistance, grapevine, stomatal conductance

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.

Wine tartaric stability based on hydrogel application

Tartrates are salts of tartaric acid that occur naturally in wine and lead to sediments that cause consumers’ rejection. There are currently different treatments to prevent its occurrence, with cold stabilization being the most traditional and well-known method.

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties