Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Abstract

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze. The aim of this study was to investigate the effects of grape harvesting and processing conditions on extraction of haze-forming PR proteins and phenolics, and the consequent impact on protein stability of wine. Sauvignon Blanc grapes were harvested by hand and by machine in 2011 and 2012 in Marlborough, New Zealand. Hand harvested grapes were processed by two different treatments: whole bunch pressing without skin contact, and pressing after destemming and crushing followed by 3 h skin contact; machine harvested grapes were processed by pressing after destemming and crushing followed by 3 h skin contact. For each treatment, the juice pressing procedure was carried out by gradually increasing the pressing pressure to three different levels (0.4 MPa, 0.8 MPa and 1.6 MPa), and juice samples were collected at each pressure point and bottle-fermented separately. Results of this study showed that pressing after destemming and crushing followed by 3 h skin contact can result in greater extraction of proteins and phenolics from grapes into juice compared with whole bunch pressing. Juice and wine obtained from machine harvested grapes showed a tendency of having lower concentration of proteins, as well as, PR proteins. Juice and wine obtained from higher pressing pressure showed the highest concentration of phenolics but the lowest concentration of proteins, suggesting that proteins in grapes are easily extracted at low pressing pressure, but greater extraction of phenolics in grapes requires higher pressing pressure. Analysis of wine protein stability showed a linear correlation between bentonite requirement and the concentration of chitinases in wine, indicating the importance of removal of chitinases to achieve protein stabilization. The findings presented here contribute to an improved understanding of the variable concentration of haze-forming PR proteins in juice as affected by grape harvesting and processing conditions, and hence the variation in bentonite requirement for resultant wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Bin Tian*, Claire Grose, James Morton, Marlene Jaspers, Mike Trought, Roland Harrison

*Lincoln University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.