Macrowine 2021
IVES 9 IVES Conference Series 9 Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Abstract

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES). The binding efficiency of specific classes of wine macromolecules and wine sulfur compounds for copper(II) and iron(II) was also assessed, and related to the metal categories found in the surveyed wines. The wine macromolecules examined included isolated white wine protein, white wine polysaccharide, red wine polyphenols (including procyanidins and monomeric phenolic compounds), and white wine polyphenols. The sulfur compounds included hydrogen sulfide, methanethiol, glutathione and thiol-substituted phenolic compounds. For the volatile sulfur compounds, the free and bound-forms were also measured by gas chromatography with sulfur chemiluminescence detection (GC-SCD). The binding was assessed by mixing the wine components with copper (II) (0.4 mg/l), iron (II) (3 mg/l) and two different metal ion mixtures (Fe 3 mg/l + Cu 0.4 mg/l and 3 mg/l + 0.2 mg/l) in a model wine system (pH 3.2) in low oxygen wine conditions. The results showed that in the wines surveyed the metal ions had significant variability in fractionation, with a higher proportion of bound copper than iron. From the binding studies, it was found that a component of the red wine polyphenol wine fraction demonstrated evidence of interaction with both copper and iron, whilst hydrogen sulfide was a significant binder of copper. Importantly, the binding between hydrogen sulfide and copper was shown to be reversible in wine conditions. The other wine macromolecules did not show any significant binding to the metal ions. The results demonstrate an important insight into the predominant forms of iron and copper ions in wine, and also insight into the main binders, especially from the perspective of wine macromolecules.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Nikolaos Kontoudakis*, Andrew Clark, Eric Wilkes, Geoffrey Scollary, Mark Smith, Paul Smith

*CSU/NWGIC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.