Macrowine 2021
IVES 9 IVES Conference Series 9 Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Abstract

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES). The binding efficiency of specific classes of wine macromolecules and wine sulfur compounds for copper(II) and iron(II) was also assessed, and related to the metal categories found in the surveyed wines. The wine macromolecules examined included isolated white wine protein, white wine polysaccharide, red wine polyphenols (including procyanidins and monomeric phenolic compounds), and white wine polyphenols. The sulfur compounds included hydrogen sulfide, methanethiol, glutathione and thiol-substituted phenolic compounds. For the volatile sulfur compounds, the free and bound-forms were also measured by gas chromatography with sulfur chemiluminescence detection (GC-SCD). The binding was assessed by mixing the wine components with copper (II) (0.4 mg/l), iron (II) (3 mg/l) and two different metal ion mixtures (Fe 3 mg/l + Cu 0.4 mg/l and 3 mg/l + 0.2 mg/l) in a model wine system (pH 3.2) in low oxygen wine conditions. The results showed that in the wines surveyed the metal ions had significant variability in fractionation, with a higher proportion of bound copper than iron. From the binding studies, it was found that a component of the red wine polyphenol wine fraction demonstrated evidence of interaction with both copper and iron, whilst hydrogen sulfide was a significant binder of copper. Importantly, the binding between hydrogen sulfide and copper was shown to be reversible in wine conditions. The other wine macromolecules did not show any significant binding to the metal ions. The results demonstrate an important insight into the predominant forms of iron and copper ions in wine, and also insight into the main binders, especially from the perspective of wine macromolecules.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Nikolaos Kontoudakis*, Andrew Clark, Eric Wilkes, Geoffrey Scollary, Mark Smith, Paul Smith

*CSU/NWGIC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.