Macrowine 2021
IVES 9 IVES Conference Series 9 Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

Abstract

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions. The C-glucosidic ellagitannins, castalagin and vescalagin, were extracted and purified (>95% pure) from Quercus robur heartwood (Quideau, S., Varadinova, T., et al., 2004). The hemisynthesis of acutissimins A and B and epiacutissimins A and B (>95% pure) was performed in an acidic organic solution [1.5% (v/v) TFA/THF] at 60 °C (Quideau, S., Jourdes, M., et al, 2005). The concentrations in ellagitannins and flavano-ellagitannins of 85 samples from different zones of Bordeaux and 100 wines from La Rioja were analyse by HPLC-DAD-MS after their extraction by a solid phase extraction (SPE) methodology using a column with TSK HW 50F gel. The average concentration of the sum of ellagitannins from Bordeaux samples was practically the double, 5.357 mg/L comparing with La Rioja ellagitannins sum average in wines, 3.022 mg/L. A panel of eighteen judges, trained with aqueous solutions of quinine sulfate (0.25 g/L), aluminium sulfate (3 g/L) and sucrose (4 g/L) to set bitterness, astringency and sweetness, took part in this sensory study. This panel passed different triangular tests using castalagin, vescalagin and a mixture of 8 ellagitannins with increasing concentrations in order to determine the concentration thresholds at two different pH values, pH 4.5 and pH 3.5, as in wine model solution and in a Merlot red wine with scarcity on ellagitannins. As a result, the castalagin astringency threshold was determined to correspond to a concentration of 5.7 mg/L at pH 4.5, whereas the same compound in the same aqueous solution adjusted at pH 3.5 has its astringency threshold at 9.2 mg/L.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Zuriñe Rasines-Perea*, Michael Jourdes, Pierre-Louis Teissedre, Rémi Jacquet, Stéphane Quideau

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.