Macrowine 2021
IVES 9 IVES Conference Series 9 WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

Abstract

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal. That process produced an extensive list of substances that play, at least individually, a role on the perceived quality of the wine. However, the combined effect of volatiles responsible for triggering the mechanism of wine-like perception is less explored. A few works address that issue, using omission tests or tentative reconstruction of the wine aroma (3). While accepting that chemical reconstruction of the volatile ‘sensometabolome’ is an important branch of research in this area, our vision is that the reconstruction work should be transferred to “those who know better” i.e. the yeast. The absence of the impression substances feature description constitute an obstacle to define the role of the “aroma quality drivers” on a global market perspective, therefore we will attempt to reconstruct the chemical feature “driven” by the yeast. The objective of the present work was to perform comparative sensorial and metabolomics analysis with four yeast strains from different origins and/or technological applications (cachaça, wine and laboratory), during a fermentative process, in order to characterize their aroma profile and the ability to produce the “wine-like” aroma. Fermentations were analyzed daily by HS-SPME-GC-MS and submitted to sensory analysis. Multivariate tools such as principal component analysis (PCA) and partial least squares regression (PLS-R) were used in order to extract the compounds related with the “wine-like” aroma, by fusion of chemical with sensory data. This approach demonstrates that acetaldehyde; ethyl esters of fatty acids were related with “wine-like” aroma. With PLS-R we were able to develop a model capable to predict “wine-like” with a correlation of 0.8. With this methodology we were capable to create a pipeline that can be used in the future for strains selection which regards the ability to produce compounds related with the “wine-like” aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

António César Silva Ferreira*, Ana Rita Monforte

*ESB-UCP and IWBT-DVO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.