Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Abstract

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L). These residues can be minimized with pressing and clarification of the juice prior to fermentation, but may increase during prolonged maceration. At the same time, H2S can play a role on the formation of the important varietal thiols 3-mercapto hexanol (3MH) and 4-mercapto-4-methylpentan-2-one (4MMP) as the direct sulfur donor to E-2-hexenal or mesityl oxide, respectively. Sauvignon blanc juices from three different locations was obtained at a commercial winery in Marlborough, New Zealand. One sample (A) was collected from the receival bin and pressed to obtain 25 L of juice. Two other samples (B and C) were collected from the commercial pressing operation. The samples were cold settled, racked to glass bottles (700 mL of juice), and then 0, 2, 10 or 50 mg/L of a wettable elemental sulfur compound was added. The fermentation was carried out using Saccharomyces cerevisiae (EC1118) at 15°C. The juices showed quite different potential to produce 3MH and 3MHA, and without any added sulfur, juice A produced a high amount of 3MH (6,000 ng/L), while juices B and C showed signs of oxidation and little 3MH was formed (< 600 ng/L). The addition of 50 mg/L of elemental sulfur caused a 1.7-fold increment in 3MH for juice A. For juice B detectable levels of 3MH and 3MHA were only observed for the extreme addition of 50 mg/L S0, which led to a 20-fold increase in 3MH production for juice C. Even though the results showed a clear relation between S0 in juice and varietal thiols in wine, the deliberate increase in the fungicide use close to harvest needs to be carefully managed, as levels of unwanted reductive sulfur compounds including H2S, methanethiol and carbon disulfide in the final wine were found to increase with the higher elemental sulfur additions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Leandro Dias Araujo*, Bruno Fedrizzi, Paul Kilmartin, Suzanne Callerot, Wessel du Toit

*University of Auckland

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.