GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Monitoring of ripening and yield of vineyards in Nemea region using UAV

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Abstract

Context and purpose of the study ‐ Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential. Due to the extension of the area there is a great variability of soil content and climatic conditions. Seven vineyards in the POD zone were selected and monitored for ripening evolution and yield of vine plots using UAV through the extraction of vegetation indices (NDVI, NDRE, GNDVI and OSAVI). Grapes were harvested at maturity and the enological potential was estimated. Winemaking was applied in order to evaluate the potential of each sub‐zone and in order to search if any connection with the vegetation indices. The aim of this study is to research the “terroir” impact in Agiorgitiko grapes and compare the quality features in order to split the Nemea region in subzones.

Material and methods ‐ Four flights took place during the summer of 2018. The UAV platform used was the DJI Matrice 100 and was equipped with the Parrot Sequoia camera. The collected images were combined into orthosmosaics and further analysis was made by combining these mosaics and extracting vegetation indices. From each vineyard grapes were sampled to be analyzed for their physicochemical properties (sugar content, total acidity, pH, YAN, color characteristics). Furthermore, grapes from each vineyard were harvested on the technological maturity level. The same vinification protocol was applied in all samples. After the alcoholic fermentation was conducted the wines were inoculated with lactic bacteria for malolactic fermentation. Classical analysis was performed in all samples.

Results ‐ Vegetation indices (NDVI, NDRE, GNDVI and OSAVI) showed significant differences in each vineyard. Also, significant differences were observed in grapes and wines originated from different vineyards. Phenolic and anthocyanin profile indicated a greater potential in wines from vineyards in higher altitude.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Ioannis KATSIKIS (1), Dionissios KALIVAS (1), Georgios KOTSERIDIS (2), Maria Ioanna XENIA (2)

(1) AUA Department of Natural Resources Management & Agricultural Engineering, Laboratory of Soil Science and Agricultural Chemistry, G.I.S. Research Group, Athens, Greece
(2) AUA Department of Food Science & Human Nutrition, Laboratory of Oenology and Alcoholic Beverages, Athens, Greece

Contact the author

Keywords

Agiorgitiko, Remote Sensing, Ripening Monitor, Vegetation Indices, Wine Analysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Integration of the AOC and terroir concepts by future professionals of the international wine sector

A survey has been conducted on 32 students and 25 former students of 28 nationalities of an international master course training executives of the international Wine sector.

Facteurs physiques et biologiques affectant la production viticole et vinicole de la région avec dénomination d’origine “Condado de Huelva” (SW d’Espagne)

Les facteurs physiques et biologiques du milieu naturel affectant la production viticole de la R.D.O. “Condado de Huelva” et quelques relations les concernant sont étudiés dans les systèmes de la production vinicole ; le bon fonctionnement du Vignoble ayant besoin par ailleurs, du concours d’autres facteurs (Reynier, 1989 ; Paneque et al., 1996, a,b).