GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Monitoring of ripening and yield of vineyards in Nemea region using UAV

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Abstract

Context and purpose of the study ‐ Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential. Due to the extension of the area there is a great variability of soil content and climatic conditions. Seven vineyards in the POD zone were selected and monitored for ripening evolution and yield of vine plots using UAV through the extraction of vegetation indices (NDVI, NDRE, GNDVI and OSAVI). Grapes were harvested at maturity and the enological potential was estimated. Winemaking was applied in order to evaluate the potential of each sub‐zone and in order to search if any connection with the vegetation indices. The aim of this study is to research the “terroir” impact in Agiorgitiko grapes and compare the quality features in order to split the Nemea region in subzones.

Material and methods ‐ Four flights took place during the summer of 2018. The UAV platform used was the DJI Matrice 100 and was equipped with the Parrot Sequoia camera. The collected images were combined into orthosmosaics and further analysis was made by combining these mosaics and extracting vegetation indices. From each vineyard grapes were sampled to be analyzed for their physicochemical properties (sugar content, total acidity, pH, YAN, color characteristics). Furthermore, grapes from each vineyard were harvested on the technological maturity level. The same vinification protocol was applied in all samples. After the alcoholic fermentation was conducted the wines were inoculated with lactic bacteria for malolactic fermentation. Classical analysis was performed in all samples.

Results ‐ Vegetation indices (NDVI, NDRE, GNDVI and OSAVI) showed significant differences in each vineyard. Also, significant differences were observed in grapes and wines originated from different vineyards. Phenolic and anthocyanin profile indicated a greater potential in wines from vineyards in higher altitude.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Ioannis KATSIKIS (1), Dionissios KALIVAS (1), Georgios KOTSERIDIS (2), Maria Ioanna XENIA (2)

(1) AUA Department of Natural Resources Management & Agricultural Engineering, Laboratory of Soil Science and Agricultural Chemistry, G.I.S. Research Group, Athens, Greece
(2) AUA Department of Food Science & Human Nutrition, Laboratory of Oenology and Alcoholic Beverages, Athens, Greece

Contact the author

Keywords

Agiorgitiko, Remote Sensing, Ripening Monitor, Vegetation Indices, Wine Analysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.