Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Abstract

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015). The present paper shows the effects of the new vacuum evaporation method on chemical and sensory properties of must and wine in prototype trials at pilot scale using white and red winemaking protocols during three harvests. For white wine, must of Chasselas grapes was concentrated up to 15% after clarification with the new vacuum evaporation method and the effects on the wine quality was compared to concentration by inverse osmosis and sugar addition. For red wine, juice was drained from destemmed and crushed red Humagne rouge grapes at a third to half of the initial weight. This non-clarified juice was concentrated up to 30% with the new vacuum evaporation method before adding it back to the initial grapes for fermentation and maceration. During the concentrations of must, sugar and nitrogen compounds were increased proportionally. Acid compounds showed a more variable behaviour. Malic acid was generally increased similar to sugar compounds whereas tartaric acid decreased or increased before decreasing at higher concentration levels. The variable behaviour of tartaric acid can be linked to the equilibrium with potassium ions. The wines produced with the new evaporation method showed generally higher acidity than the control wines with sugar addition consistent with the results from the must analysis. White wines also showed an increase in phenolic compounds. In the sensory evaluation the white wines produced with the new evaporation method were generally preferred compared to the control wines with sugar addition. They were recognised for significantly more fruity aromas. The wines produced with inverse osmosis were rated intermediate. For red wines the sensory evaluation showed no clear trend so far with results ranging from insignificant differences to preference for the wine produced with the new evaporation method due to smoother tannins. Generally the results from these pilot trials are consistent with those from traditional evaporation methods. This shows the feasibility of applying the new vacuum evaporation method to white and red wine production. Its robustness towards high sugar levels and non-clarified grape juice together with the simplicity of the construction and the process handling make this new method a promising development for the wine production.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Johannes Rösti*, Dieter Baldinger, Heinrich Feichtinger

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].