Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of toasting oak wood on ellagitannin structures

Influence of toasting oak wood on ellagitannin structures

Abstract

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition. Burning the inner oak wood barrels surface with an open fire inducing severe changes in ellagitannins structures and compositions. Up to now thermal ellagitannin products or the reaction mechanisms underlying the ellagitannin degradation are not well searched, thus the goal of the present study is to research oak wood ellagitannin changes during toasting. For this purpose a purification protocol was established, 100 mg ellagitannins crude extract was fractionated on Toyopearl TSK HW-40 (F) gel from Tosoh Corp, ellagitannins were eluted in the acetone/water fraction. This fraction was fractionated for two times on a C-18 column. The final fraction containing only the eight principal ellagitannins was dry-heated in a lab oven for 60 min at 220 °C. After cooling, it was further fractionated on C-18 column and separated by means of preparative HPLC before being injected in UPLC/TOF-MS. Reduction process is occuring during toasting whereas oxydation can occur without heating; Thus vescalagin, is reduced into deoxyvescalagin whereas castalagin oxidation form is presented before and after toasting. Additionally to deoxyvescalagin, other ellagitannin derivatives which showed [M-H]-ion peak at m/z 1055.0631, 1041.0792, 1011.0756 and 971.0456 were produced by the toasting and identified for the first time. LC-MS/MS analyses gave strong evidence that decarboxylations as well as ellagic acid loss are the key steps in ellagitanin thermal degradation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kleopatra Chira*, Michael Jourdes, Pierre Louis Teissedre

*Institut des sciences de la vigne et du vin

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.