Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Abstract

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines. The Moscato nero d’Acqui grapes contain an interesting profile of secondary metabolites. The content of anthocyanins is low (314 mg/kg) but their profile is characterized mainly by trisubstituted anthocyanins, especially malvidin and its derivatives (about 50%). The aromatic composition is essentially characterized by terpenes: geraniol and nerol are the monoterpenes showing the highest contents, both in free and glycosidic forms. On the basis of the grape chemical characteristics, three types of special wines were produced and analyzed: fortified (from fresh grapes), sfursat (dry wine) and passito (sweet wine). With this aim, the grapes were subjected to a withering process under the same controlled conditions (16-18 °C, 55-70 RH%, 0.6 m/s air speed) until 27 and 36 °Brix for sfursat and passito wines, respectively. To some extent, the dehydration process affects the concentration of anthocyanins, total flavonoids, proanthocyanidins and flavanols reactive to vanillin in the skins, as well as aroma compounds in the glycosidic form. This effect may be due to the sum of the two opposite effects of concentration and oxidation of these secondary metabolites during the dehydration process. The phenolic content of the wine reflects those found in the grapes: sfursat and passito wines present higher contents of anthocyanin, total flavonoids, proanthocyanidins and flavanols reactive to vanillin than those of the fortified wine that is produced from fresh grapes. Therefore, the determination of the anthocyanin concentration shows the effectiveness of grape drying technique in bringing a greater quantity of red color substances and in decreasing the presence of orange notes. Both free and glycosidic aromatic components of the three wines are characterized mostly by terpenes. Wine concentrations of linalool and citronellol in free forms increase with respect to the quantities found in the grapes, however their respective concentrations of glycosidic forms showed a decrease. The aroma of the passito and the sfursat wines is characterized by a higher concentration of citronellol and 2-phenyl-ethanol in free form, which may give notes of rose and citrus. On the basis of the results obtained so far, this variety has a clear potential for the production of special wines, in terms of final hue, color intensity and aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carolina Ossola, Fabrizio Torchio, Francesca Mosso, Luca Rolle, Simone Giacosa, Susana Río Segade, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.