Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Abstract

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines. The Moscato nero d’Acqui grapes contain an interesting profile of secondary metabolites. The content of anthocyanins is low (314 mg/kg) but their profile is characterized mainly by trisubstituted anthocyanins, especially malvidin and its derivatives (about 50%). The aromatic composition is essentially characterized by terpenes: geraniol and nerol are the monoterpenes showing the highest contents, both in free and glycosidic forms. On the basis of the grape chemical characteristics, three types of special wines were produced and analyzed: fortified (from fresh grapes), sfursat (dry wine) and passito (sweet wine). With this aim, the grapes were subjected to a withering process under the same controlled conditions (16-18 °C, 55-70 RH%, 0.6 m/s air speed) until 27 and 36 °Brix for sfursat and passito wines, respectively. To some extent, the dehydration process affects the concentration of anthocyanins, total flavonoids, proanthocyanidins and flavanols reactive to vanillin in the skins, as well as aroma compounds in the glycosidic form. This effect may be due to the sum of the two opposite effects of concentration and oxidation of these secondary metabolites during the dehydration process. The phenolic content of the wine reflects those found in the grapes: sfursat and passito wines present higher contents of anthocyanin, total flavonoids, proanthocyanidins and flavanols reactive to vanillin than those of the fortified wine that is produced from fresh grapes. Therefore, the determination of the anthocyanin concentration shows the effectiveness of grape drying technique in bringing a greater quantity of red color substances and in decreasing the presence of orange notes. Both free and glycosidic aromatic components of the three wines are characterized mostly by terpenes. Wine concentrations of linalool and citronellol in free forms increase with respect to the quantities found in the grapes, however their respective concentrations of glycosidic forms showed a decrease. The aroma of the passito and the sfursat wines is characterized by a higher concentration of citronellol and 2-phenyl-ethanol in free form, which may give notes of rose and citrus. On the basis of the results obtained so far, this variety has a clear potential for the production of special wines, in terms of final hue, color intensity and aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carolina Ossola, Fabrizio Torchio, Francesca Mosso, Luca Rolle, Simone Giacosa, Susana Río Segade, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).