Macrowine 2021
IVES 9 IVES Conference Series 9 Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Abstract

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids). We show that the main physiological response occurs in the early stages of berry development when the berry is still photosynthetically active and therefore responds to changes to the microclimate in the same way as the major photosynthetically active organs (leaves). The study shows that grapevine berries respond to the increased exposure by modulating secondary metabolites with antioxidant capacity, also exhibiting clearly a degree of plasticity on the metabolic level. This lead us to propose a mechanism of antioxidant homeostasis in the different developmental stages of the berries, using unique metabolites per stage, but with similar biological functions2. A further objective was to evaluate the specific responses and/or contributions of UV exposure to the observed results. Using UV attenuation screens to modulate UV exposure and metabolite profiling of specific secondary metabolites during development and ripening we show that the berries used carotenoids and associated xanthophyll cycles to support acclimation to UV exposure and that the berry responses differed between high and low light conditions. Taken together our results support that ecologically relevant doses of UV are used by grapevine to acclimate and modulate core processes to remain productive and thriving.

1. Alexandersson et al., 2014. Frontiers in Plant Science 5:296 2. Young et al. 2016. Plant Physiology DOI:10.1104/pp.15.01775

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Melane Vivier*, Chandre Joubert, Hans Eyeghe-Bickong, Philip Young

*Institute for Wine Biotechnology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.