GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Abstract

Context and purpose of the study – Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions, in terms of rainfall and water availability. Taking both appellations together, they account for close to 4000 ha cultivated by more than 1300 vine growers. Due to water stress during the growing season, irrigation is considered a suitable tool to ensure grape quality at harvest in order to maintain the high‐quality standard of these regions’ wines. However, optimal irrigation strategies based on plant water stress evaluation are not often undertaken, which may lead to inefficient water management. The objective of this study is to develop a regional irrigation strategy based on specific water potential measurements and meteorological data from different region sub‐areas, in order to achieve an overall 10% reduction of water consumption in the region.

Material and methods – During two growing seasons (2017 and 2018), a total of 53 vineyard plots were monitored, which represented the main grape varieties planted in the region (Grenache, Carignan, Cabernet-Sauvignon and Syrah) and were classified in eight sub‐areas inside the region. From pea‐size to harvest (phenological stages), measurements of phenology, water potential and meteorological data were collected. Irrigation recommendations were then given to growers, to avoid water potential below ‐1.4 MPa. Generic agronomic characteristics and production of the studied plots were also evaluated. Data on water use in the monitored vineyard network were compared to historical data of water use in the region. In addition, a specific field experiment was conducted to assess water consumption reduction using three different irrigation strategies.

Results – The monitoring of 53 vineyard plots per year was carried out during 2017 and 2018, with different meteorological conditions, accounting for a more water deficient season in 2017. Overall, more than 50 irrigation recommendations were emitted to growers. The water consumption with the optimized irrigation strategy ranged from 10 to 83 liters per ha, for the whole of 53 vineyards evaluated. Compared to the generic consumption reference of 80 l ha‐1, the recommended dose saved up to 87 % of the irrigation water per year. Moreover, two irrigation strategies also reduced water consumption compared to local grower strategy in the field trial comparing three strategies. The results of this study will help to develop an irrigation strategy, specific by region’s sub‐zones, in order to optimize water consumption while maintaining a high quality of the produced wines of this region. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Carlos CALVO‐GARRIDO (1), Mario DE LA FUENTE (2), Rafael RODA (1), Joan RUIZ (1), Marcelo MAZZIERI (1), Sergi DE LAMO (1)

(1) VITEC – Centre Tecnològic del Vi, Ctra de Porrera, Km 1, 43730 – Falset, Spain
(2) PTV-Plataforma Tecnológica del Vino, C/ Musgo no2, Bajo-B. -28023 – Madrid, Spain

Contact the author

Keywords

Vitis vinifera, Irrigation, Water use, water stress, regional strategy

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment.

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared.

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.