Macrowine 2021
IVES 9 IVES Conference Series 9 Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Abstract

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins. Furthermore, the possible existence of synergism on astringency between phenolic substances (4) has recently arisen. Salivary proteins have been grouped in six main classes: histatins, statherin, cystatins, and proline-rich proteins (acidic, basic and glycosylated) (5). The possible existence of selective interactions between different types of wine phenolic compounds and different salivary protein classes could be responsible for the observed synergisms. To obtain further insights into the interactions between these compounds and salivary proteins that could explain the synergistic effect observed, we have studied the interactions between flavanols and salivary proteins by quenching of fluorescence and HPLC-DAD. Quenching constants calculated and chromatographic profiles obtained could partially explain the synergisms observed in the sensory evaluation of wine phenolic compounds. Furthermore, the effect of the presence of other molecular species, in particular anthocyanins, in the interactions between flavanols and salivary proteins has also been studied. Results obtained confirm the existence of interactions between anthocyanins and salivary proteins which could hinder the interaction between flavanols and salivary proteins, affecting the perceived astringency.

References 1. Gawel, R.; Iland, P. G.; Francis, I. L. Food Quality and Preference 2001, 12, 83-94. 2. de Freitas, V.; Mateus, N. Current Organic Chemistry 2012, 16, 724-746. 3. Scollary, G. R.; Pasti, G.; Kallay, M.; Blackman, J.; Clark, A. C. Trends in Food Science & Technology 2012, 27, 25-36. 4. Ferrer-Gallego, R.; Henández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Food Research International 2014, 62, 1100-1107 (). 5. Humphrey, S. P.; Williamson, R. T. Journal of Prosthetic Dentistry 2001, 85, 162-169. Acknowledgement Thanks are due to Spanish MINECO for financial support (AGL2014-58486-C2-1-R)

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Escribano-Bailon*, Alba Ramos-Pineda, Cristina Alcalde-Eon, Ignacio García Estévez, Julian Rivas-Gonzalo, Monserrat Dueñas

*University of Salamanca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.