terclim by ICS banner
IVES 9 IVES Conference Series 9 Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Abstract

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface. Many genes were differentially expressed between wounded cuttings and homografts, and between the different scion/rootstock combinations. By combining MapMan and gene ontology analysis, we identified several genes families potentially involved in grafting. Our results were consistent with previous work on other plant species, but we were able to identify some specificities linked to grafting in grapevine. By comparing the scion of homo- and hetero-grafts, we also show that grafting with a non-self-rootstock can influence scion gene expression 14 days after grafting. The combination of metabolomics and transcriptomics shows that the changes in gene expression were accompanied by corresponding changes in tissue metabolite concentrations.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sarah Jane Cookson1*, Grégoire Loupit1#, Virginie Garcia1, Joseph Tran1, Céline Franc3, Gilles De Revel3, Josep Valls Fonayet2,3, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2 Bordeaux Metabolome Facility, MetaboHUB, PHENOMEEMPHASIS, 33140 Villenave dOrnon, France
3 Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France

#current address:Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, Université Lyon 1, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, transcriptome, metabolite analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.