terclim by ICS banner
IVES 9 IVES Conference Series 9 Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Abstract

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface. Many genes were differentially expressed between wounded cuttings and homografts, and between the different scion/rootstock combinations. By combining MapMan and gene ontology analysis, we identified several genes families potentially involved in grafting. Our results were consistent with previous work on other plant species, but we were able to identify some specificities linked to grafting in grapevine. By comparing the scion of homo- and hetero-grafts, we also show that grafting with a non-self-rootstock can influence scion gene expression 14 days after grafting. The combination of metabolomics and transcriptomics shows that the changes in gene expression were accompanied by corresponding changes in tissue metabolite concentrations.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sarah Jane Cookson1*, Grégoire Loupit1#, Virginie Garcia1, Joseph Tran1, Céline Franc3, Gilles De Revel3, Josep Valls Fonayet2,3, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2 Bordeaux Metabolome Facility, MetaboHUB, PHENOMEEMPHASIS, 33140 Villenave dOrnon, France
3 Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France

#current address:Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, Université Lyon 1, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, transcriptome, metabolite analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of potential crop on vine water constraint

It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.