terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of NAC61 transcription factor in the regulation of berry ripening progression 

The role of NAC61 transcription factor in the regulation of berry ripening progression 

Abstract

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated. We demonstrate that NAC61 self-activates and is targeted by NAC60, another master regulator of grapevine organ maturation. Moreover, NAC61 physically interacts with NAC60 triggering the activation of common targets. In our studies, several NAC-NAC synergistic interactions were demonstrated, allowing us to suppose the existence of a NAC-dependent regulatory network orchestrating berry ripening and whose exploration is our current main purpose. As members of such regulatory network, we defined a core of 13 NACs highly correlated with NAC60, NAC61 and NAC33, the latter? being a repressor of vegetative organ growth during the vegetative-to-mature phase transition. By using DAP-Seq combined with transcriptomic data and functional assays we reconstructed a hierarchical intra-family regulatory network. We confirmed NAC60 and NAC33 as high hierarchy activators and we traced the downstream network genes been active in fruit ripening. This work is of high interest as identifying key regulators governing berry ripening progression provides important biomarkers affecting quality of grapes and wine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandra Amato1*, Chiara Foresti1, Luis Orduña2, Oscar Bellon1, Elodie Vandelle1, José Tomás Matus2,  Giovanni Battista Tornielli1, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Verona, Italy
2 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain

Contact the author*

Keywords

Ripening, NAC transcription factors, Regulatory network, Functional analysis, DAP-Seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

Climate change projections in serbian wine-growing regions

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario.

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.